-
1
-
-
0001893922
-
A geometric heat flow for one-forms on three dimensional manifolds
-
Altschuler S. J. A geometric heat flow for one-forms on three dimensional manifolds. Illinois J. Math. 39:1995;98-118.
-
(1995)
Illinois J. Math.
, vol.39
, pp. 98-118
-
-
Altschuler, S.J.1
-
2
-
-
0000147123
-
Mean curvature flow through singularities for surfaces of rotation
-
Altschuler S. J., Angenent S., Giga Y. Mean curvature flow through singularities for surfaces of rotation. J. Geom. Anal. 5:1995;293-357.
-
(1995)
J. Geom. Anal.
, vol.5
, pp. 293-357
-
-
Altschuler, S.J.1
Angenent, S.2
Giga, Y.3
-
3
-
-
0001175952
-
Convergence to translating solutions for a class of quasilinear parabolic equations with fixed angle of contact to a boundary
-
Altschuler S. J., Wu L. F. Convergence to translating solutions for a class of quasilinear parabolic equations with fixed angle of contact to a boundary. Math. Ann. 295:1993;761-765.
-
(1993)
Math. Ann.
, vol.295
, pp. 761-765
-
-
Altschuler, S.J.1
Wu, L.F.2
-
4
-
-
0001645594
-
Translating surfaces of the non-parametric mean curvature flow with prescribed contact angle
-
Altschuler S. J., Wu L. F. Translating surfaces of the non-parametric mean curvature flow with prescribed contact angle. Calc. Var. Partial Differential Equations. 2:1994;101-111.
-
(1994)
Calc. Var. Partial Differential Equations
, vol.2
, pp. 101-111
-
-
Altschuler, S.J.1
Wu, L.F.2
-
5
-
-
0000376647
-
Principle du maximum, inégalité de Harnack et unicité du problème du Cauchy pour les opérateurs elliptic dégénérés
-
Bony J.-M. Principle du maximum, inégalité de Harnack et unicité du problème du Cauchy pour les opérateurs elliptic dégénérés. Ann. Inst. Fourier (Grenoble). 19:1969;277-304.
-
(1969)
Ann. Inst. Fourier (Grenoble)
, vol.19
, pp. 277-304
-
-
Bony, J.-M.1
-
6
-
-
84972499852
-
Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations
-
Chen Y. G., Giga Y., Goto S. Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations. J. Differential Geom. 33:1991;749-786.
-
(1991)
J. Differential Geom.
, vol.33
, pp. 749-786
-
-
Chen, Y.G.1
Giga, Y.2
Goto, S.3
-
8
-
-
84972518016
-
Motion of level sets by mean curvature, I
-
Evans L. C., Spruck J. Motion of level sets by mean curvature, I. J. Differential Geom. 33:1991;635-681.
-
(1991)
J. Differential Geom.
, vol.33
, pp. 635-681
-
-
Evans, L.C.1
Spruck, J.2
-
10
-
-
0009025636
-
A level set method for surface evolution equations
-
Giga Y. A level set method for surface evolution equations. Sugaku. 47:1995;321-340.
-
(1995)
Sugaku
, vol.47
, pp. 321-340
-
-
Giga, Y.1
-
11
-
-
0001024159
-
Generalized interface evolution with the Neumann boundary condition
-
Giga Y., Sato M.-H. Generalized interface evolution with the Neumann boundary condition. Proc. Japan Acad. Ser. A Math. Sci. 67:1991;263-266.
-
(1991)
Proc. Japan Acad. Ser. A Math. Sci.
, vol.67
, pp. 263-266
-
-
Giga, Y.1
Sato, M.-H.2
-
12
-
-
84972498062
-
Neumann problem for singular degenerate parabolic equations
-
Giga Y., Sato M.-H. Neumann problem for singular degenerate parabolic equations. Differential Integral Equations. 6:1993;1217-1230.
-
(1993)
Differential Integral Equations
, vol.6
, pp. 1217-1230
-
-
Giga, Y.1
Sato, M.-H.2
-
13
-
-
0003259059
-
Elliptic Partial Differential Equations of Second Order
-
New York: Springer-Verlag
-
Gilbarg D., Trudinger N. S. Elliptic Partial Differential Equations of Second Order. Math. Wiss. 224:1983;Springer-Verlag, New York.
-
(1983)
Math. Wiss.
, vol.224
-
-
Gilbarg, D.1
Trudinger, N.S.2
-
14
-
-
0003227734
-
Mean curvature motion of nonparametric hypersurfaces with contact angle condition
-
B. Chow, R. Gulliver, S. Levy, & J. Sullivan. Wellesley: Peters
-
Guan B. Mean curvature motion of nonparametric hypersurfaces with contact angle condition. Chow B., Gulliver R., Levy S., Sullivan J. Elliptic and Parabolic Methods in Geometry. 1996;47-56 Peters, Wellesley.
-
(1996)
Elliptic and Parabolic Methods in Geometry
, pp. 47-56
-
-
Guan, B.1
-
15
-
-
0000544188
-
Non-parametric mean curvature evolution with boundary conditions
-
Huisken G. Non-parametric mean curvature evolution with boundary conditions. J. Differential Equations. 77:1989;369-378.
-
(1989)
J. Differential Equations
, vol.77
, pp. 369-378
-
-
Huisken, G.1
-
16
-
-
0008980071
-
A strong maximum principle for singular minimal hypersurfaces
-
Ilmanen T. A strong maximum principle for singular minimal hypersurfaces. Calc. Var. Partial Differential Equations. 4:1996;443-467.
-
(1996)
Calc. Var. Partial Differential Equations
, vol.4
, pp. 443-467
-
-
Ilmanen, T.1
-
18
-
-
0032393892
-
Strong maximum principle for semicontinuous viscosity solutions of nonlinear partial differential equations
-
Kawohl B., Kutev N. Strong maximum principle for semicontinuous viscosity solutions of nonlinear partial differential equations. Arch. Math. 70:1998;470-478.
-
(1998)
Arch. Math.
, vol.70
, pp. 470-478
-
-
Kawohl, B.1
Kutev, N.2
-
20
-
-
0000114118
-
Interface evolution with Neumann boundary condition
-
Sato M.-H. Interface evolution with Neumann boundary condition. Adv. Math. Sci. Appl. 4:1994;249-264.
-
(1994)
Adv. Math. Sci. Appl.
, vol.4
, pp. 249-264
-
-
Sato, M.-H.1
-
21
-
-
0008979681
-
Capillary problem for singular degenerate parabolic equations on a half space
-
Sato M.-H. Capillary problem for singular degenerate parabolic equations on a half space. Differential Integral Equations. 9:1996;1213-1224.
-
(1996)
Differential Integral Equations
, vol.9
, pp. 1213-1224
-
-
Sato, M.-H.1
-
22
-
-
0009036699
-
A strong maximum principle for varifolds that are stationary with respect to even parametric elliptic functionals
-
Solomon B., White B. A strong maximum principle for varifolds that are stationary with respect to even parametric elliptic functionals. Indiana Univ. Math. J. 38:1989;683-691.
-
(1989)
Indiana Univ. Math. J.
, vol.38
, pp. 683-691
-
-
Solomon, B.1
White, B.2
-
24
-
-
0001678638
-
Generalized motion by curvature with a Dirichlet condition
-
Sternberg P., Ziemer W. P. Generalized motion by curvature with a Dirichlet condition. J. Differential Equations. 114:1994;580-600.
-
(1994)
J. Differential Equations
, vol.114
, pp. 580-600
-
-
Sternberg, P.1
Ziemer, W.P.2
|