메뉴 건너뛰기




Volumn 35, Issue 8, 1999, Pages 1061-1072

Approximations of solutions to some second order nonlinear differential equations

Author keywords

Approximations of solutions; Nonlinear ordinary differential equation of second order

Indexed keywords

APPROXIMATION THEORY; DIFFERENTIAL EQUATIONS; DIFFUSION; PROBLEM SOLVING; THEOREM PROVING;

EID: 0033102037     PISSN: 0362546X     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0362-546X(99)80001-7     Document Type: Article
Times cited : (4)

References (9)
  • 1
    • 84971178563 scopus 로고
    • On a class of Volterra and Fredholm non-linear integral equations
    • P.J. Bushell, On a class of Volterra and Fredholm non-linear integral equations, Math. Proc. Cambridge Philos. Soc. 79 (1976) 329-335.
    • (1976) Math. Proc. Cambridge Philos. Soc. , vol.79 , pp. 329-335
    • Bushell, P.J.1
  • 2
    • 0023842643 scopus 로고
    • Approximate solutions to a nonlinear diffusion equation
    • J.R. King, Approximate solutions to a nonlinear diffusion equation, J. Engng Math. 22 (1988) 53-72.
    • (1988) J. Engng Math. , vol.22 , pp. 53-72
    • King, J.R.1
  • 3
    • 0042195550 scopus 로고    scopus 로고
    • Existence, uniqueness and approximations of solutions for a nonlinear diffusion equation
    • in press
    • J.J. Nieto, W. Okrasinski, Existence, uniqueness and approximations of solutions for a nonlinear diffusion equation, J. Math. Anal. Appl., 1998, in press.
    • J. Math. Anal. Appl. , pp. 1998
    • Nieto, J.J.1    Okrasinski, W.2
  • 4
    • 0039825255 scopus 로고
    • Integral equations methods in the theory of the water percolation, mathematical methods in fluids dynamics oberwolfach, 1981
    • P. Lang, Frankfurt
    • W. Okrasinski, Integral equations methods in the theory of the water percolation, Mathematical Methods in Fluids Dynamics Oberwolfach, 1981; P. Lang, Methoden Verfahren Math. Phys. 24 (1982) Frankfurt, 167-176.
    • (1982) Methoden Verfahren Math. Phys. , vol.24 , pp. 167-176
    • Okrasinski, W.1
  • 5
    • 0009934263 scopus 로고
    • On a nonlinear ordinary differential equation
    • W. Okrasinski, On a nonlinear ordinary differential equation, Ann. Polon. Math. 49 (1989) 237-245.
    • (1989) Ann. Polon. Math. , vol.49 , pp. 237-245
    • Okrasinski, W.1
  • 6
    • 7044282746 scopus 로고
    • Existence theory for the equations, (G′(y))′ = qf(t,y,y′) and (G′(y) - PH(y))′ = -p′H(y) + qf(t, y)
    • D. O'Regan, Existence theory for the equations, (G′(y))′ = qf(t,y,y′) and (G′(y) - pH(y))′ = -p′H(y) + qf(t, y), J. Math. Anal. Appl. 183 (1994) 435-470.
    • (1994) J. Math. Anal. Appl. , vol.183 , pp. 435-470
    • O'Regan, D.1
  • 7
    • 0009956383 scopus 로고
    • Qualitative behaviour of a class of second order nonlinear differential equation on the halfline
    • S. Staňek, Qualitative behaviour of a class of second order nonlinear differential equation on the halfline, Ann. Polon. Math. 58 (1993) 65-83.
    • (1993) Ann. Polon. Math. , vol.58 , pp. 65-83
    • Staňek, S.1
  • 9
    • 0000589850 scopus 로고
    • Stopping and merging problems for the porous media equation
    • T.P. Witelski, Stopping and merging problems for the porous media equation, IMA J. Appl. Math. 54 (1995) 227-243.
    • (1995) IMA J. Appl. Math. , vol.54 , pp. 227-243
    • Witelski, T.P.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.