-
1
-
-
0025532295
-
Fixed-weight networks can learn
-
IEEE, San Diego, CA, 1990. New York: IEEE
-
N. E. Cotter and P. R. Conwell, "Fixed-weight networks can learn," in Proc. Int. Joint Conf. Neural Networks, IEEE, San Diego, CA, 1990. New York: IEEE, 1990, pp. II553-II559.
-
(1990)
Proc. Int. Joint Conf. Neural Networks
-
-
Cotter, N.E.1
Conwell, P.R.2
-
2
-
-
0025557570
-
Methuselah networks and optimal control
-
IEEE, San Diego, CA, 1990. New York: IEEE
-
_, "Methuselah networks and optimal control," in Proc. Int. Joint Conf. Neural Networks, IEEE, San Diego, CA, 1990. New York: IEEE, 1990. pp. III401-III406.
-
(1990)
Proc. Int. Joint Conf. Neural Networks
-
-
-
3
-
-
0026373591
-
Learning algorithms and fixed dynamics
-
IEEE, Seattle, WA, 1991. New York: IEEE
-
_, "Learning algorithms and fixed dynamics," in Proc. Int. Joint Conf. Neural Networks, IEEE, Seattle, WA, 1991. New York: IEEE, 1991. pp. 1799-1804.
-
(1991)
Proc. Int. Joint Conf. Neural Networks
, pp. 1799-1804
-
-
-
4
-
-
33747463235
-
Universal approximation by phase series and fixed-weight networks
-
_, "Universal approximation by phase series and fixed-weight networks," Neural Comput., vol. 5, pp. 359-362, 1993.
-
(1993)
Neural Comput.
, vol.5
, pp. 359-362
-
-
-
6
-
-
0030588653
-
How dependencies between successive examples affect on-line learning
-
W. Wiegerinck and T. Heskes, "How dependencies between successive examples affect on-line learning," Neural Comput., vol. 8, pp. 1743-1765, 1996.
-
(1996)
Neural Comput.
, vol.8
, pp. 1743-1765
-
-
Wiegerinck, W.1
Heskes, T.2
-
7
-
-
0004162267
-
A learning algorithm for continually running fully recurrent neural networks
-
Univ. San Diego, La Jolla, CA
-
R. J. Williams and D. Zipser, "A learning algorithm for continually running fully recurrent neural networks," Univ. San Diego, La Jolla, CA, ICS Tech. Rep. 8805.
-
ICS Tech. Rep. 8805
-
-
Williams, R.J.1
Zipser, D.2
-
8
-
-
0000442791
-
Generalization of back-propagation to recurrent neural networks
-
F. J. Pineda, "Generalization of back-propagation to recurrent neural networks," Phys. Rev. Lett., vol. 59, pp. 2229-2232, 1989.
-
(1989)
Phys. Rev. Lett.
, vol.59
, pp. 2229-2232
-
-
Pineda, F.J.1
-
9
-
-
0023563286
-
A learning rule for asynchronous perceptrons with feedback in combinatorial environment
-
San Diego, CA, 1987. New York: IEEE
-
L. B. Almeida, "A learning rule for asynchronous perceptrons with feedback in combinatorial environment," in Proc. IEEE 1st Int. Conf. Neural Networks, San Diego, CA, 1987. New York: IEEE, 1987, pp. II609-II618.
-
(1987)
Proc. IEEE 1st Int. Conf. Neural Networks
-
-
Almeida, L.B.1
-
10
-
-
0003464265
-
-
School Comput. Sci., Carnegie Mellon Univ., Pittsburgh, PA, Rep. CMU-CS-90-196
-
B. A. Pearlmutter, "Dynamic recurrent neural networks," School Comput. Sci., Carnegie Mellon Univ., Pittsburgh, PA, Rep. CMU-CS-90-196, 1990.
-
(1990)
Dynamic Recurrent Neural Networks
-
-
Pearlmutter, B.A.1
-
12
-
-
51249194645
-
A logical calculus of the ideas imminent in nervous activity
-
W. S. McCulloch and W. Pitts, "A logical calculus of the ideas imminent in nervous activity," in Bull. Math. Biophys., vol. 5, 1943.
-
Bull. Math. Biophys.
, vol.5
, pp. 1943
-
-
McCulloch, W.S.1
Pitts, W.2
-
13
-
-
0042624568
-
VLSI implementation of learning and memory systems: A review
-
R. P. Lippman, J. R. Moody, D. S. Toutetzky, Eds. San Mateo, CA: Morgan-Kaufmann
-
M. A. Holler, "VLSI implementation of learning and memory systems: A review," in Advances Neural Inform. Processing Syst. 3, R. P. Lippman, J. R. Moody, D. S. Toutetzky, Eds. San Mateo, CA: Morgan-Kaufmann, 1991.
-
(1991)
Advances Neural Inform. Processing Syst. 3
-
-
Holler, M.A.1
-
14
-
-
0027562289
-
Optoelectronic array that computes error and weight modification for a bipolar neural network
-
C. Mao and K. M. Johnson, "Optoelectronic array that computes error and weight modification for a bipolar neural network," Appl. Opt., vol. 32, no. 8, pp. 1290-1296, 1993.
-
(1993)
Appl. Opt.
, vol.32
, Issue.8
, pp. 1290-1296
-
-
Mao, C.1
Johnson, K.M.2
-
15
-
-
0001278980
-
Self-optimizing, nonsymmetrical neural net for content addressable memory and pattern recognition
-
A. Lapedes and R. Farber, "Self-optimizing, nonsymmetrical neural net for content addressable memory and pattern recognition," Physica, vol. 22D, pp. 247-259, 1986.
-
(1986)
Physica
, vol.22 D
, pp. 247-259
-
-
Lapedes, A.1
Farber, R.2
-
16
-
-
84910716447
-
Programming a massively parallel, computation universal system: Static behavior
-
J. S. Denker, Ed. New York: Am. Inst. Phys.
-
_, "Programming a massively parallel, computation universal system: Static behavior," in Neural Networks for Computing, J. S. Denker, Ed. New York: Am. Inst. Phys., pp. 283-296.
-
Neural Networks for Computing
, pp. 283-296
-
-
-
19
-
-
0028464007
-
Neural network classification and formalization
-
J. Fulcher, Ed. Amsterdam, The Netherlands: Elsevier
-
E. Fiesler, "Neural network classification and formalization," in Computer Standards and Interfaces, vol. 16, J. Fulcher, Ed. Amsterdam, The Netherlands: Elsevier, 1994.
-
(1994)
Computer Standards and Interfaces
, vol.16
-
-
Fiesler, E.1
-
20
-
-
0008554931
-
A focused back-propagation algorithm for temporal pattern recognition
-
M. C. Mozer, "A focused back-propagation algorithm for temporal pattern recognition," Complex Syst., vol. 3, pp. 349-381, 1989.
-
(1989)
Complex Syst.
, vol.3
, pp. 349-381
-
-
Mozer, M.C.1
|