-
1
-
-
0000565439
-
Nonlinear models of diffusion on a finite space
-
[1] M.A. Akcoglu and U. Krengel, "Nonlinear models of diffusion on a finite space", Prob. Th. Rel. Fields 76, (1987), 411-420.
-
(1987)
Prob. Th. Rel. Fields
, vol.76
, pp. 411-420
-
-
Akcoglu, M.A.1
Krengel, U.2
-
2
-
-
84966243152
-
Some relations between nonexpansive and order preserving mappings
-
[2] M.G. Crandall and L. Tartar, "Some relations between nonexpansive and order preserving mappings", Proc. Amer. Math. Soc. 78, (1980), 385-391.
-
(1980)
Proc. Amer. Math. Soc.
, vol.78
, pp. 385-391
-
-
Crandall, M.G.1
Tartar, L.2
-
4
-
-
0009164533
-
-
"Fixed Point Theory and Applications" (K.-K. Tan, ed.), World Scientific, Singapore
-
[4] R. Lyons and R.D. Nussbaum, On transitive and commutative finite groups of isometries, pp. 189-228 in "Fixed Point Theory and Applications" (K.-K. Tan, ed.), World Scientific, Singapore, 1992.
-
(1992)
On Transitive and Commutative Finite Groups of Isometries
, pp. 189-228
-
-
Lyons, R.1
Nussbaum, R.D.2
-
6
-
-
0001099092
-
Majoration explicite de l'orde maximum d'un element du groupe symetrique
-
[6] J.-P. Massias, "Majoration explicite de l'orde maximum d'un element du groupe symetrique", Ann. Fac. Sci. Toulouse VI, (1984), 269-281.
-
(1984)
Ann. Fac. Sci. Toulouse
, vol.6
, pp. 269-281
-
-
Massias, J.-P.1
-
7
-
-
0001494552
-
The maximum order of an element of a finite symmetric group
-
[7] W. Miller, "The maximum order of an element of a finite symmetric group", Am. Math. Monthly 94, (1987), 497-506.
-
(1987)
Am. Math. Monthly
, vol.94
, pp. 497-506
-
-
Miller, W.1
-
9
-
-
84972533581
-
Omega limit sets of nonexpansive maps: Finiteness and cardinality estimates
-
[9] R.D. Nussbaum, "Omega limit sets of nonexpansive maps: finiteness and cardinality estimates", Diff. Integral Equations 3, (1990), 523-540.
-
(1990)
Diff. Integral Equations
, vol.3
, pp. 523-540
-
-
Nussbaum, R.D.1
-
10
-
-
51249178491
-
Estimates of the periods of periodic points of nonexpansive operators
-
[10] R.D. Nussbaum, "Estimates of the periods of periodic points of nonexpansive operators", Israel J. Math. 76, (1991), 345-380.
-
(1991)
Israel J. Math.
, vol.76
, pp. 345-380
-
-
Nussbaum, R.D.1
-
11
-
-
0001574509
-
Lattice isomorphisms and iterates of nonexpansive maps
-
[11] R.D. Nussbaum, "Lattice isomorphisms and iterates of nonexpansive maps", Nonlinear Analysis, T.M.A. 22, (1994), 945-970.
-
(1994)
Nonlinear Analysis, T.M.A.
, vol.22
, pp. 945-970
-
-
Nussbaum, R.D.1
-
12
-
-
0000653784
-
Convergence of iterates of a nonlinear operator arising in statistical mechanics
-
[12] R.D. Nussbaum, "Convergence of iterates of a nonlinear operator arising in statistical mechanics", Nonlinearity 4, (1991), 1223-1240.
-
(1991)
Nonlinearity
, vol.4
, pp. 1223-1240
-
-
Nussbaum, R.D.1
-
14
-
-
0009090035
-
-
Universiteit van Amsterdam, Mathematical preprint series 97-? submitted
-
[14] R.D. Nussbaum, M. Scheutzow and S.M. Verduyn Lunel, Periodic points of nonexpansive maps and nonlinear generalizations of the Perron-Frobenius theory, Universiteit van Amsterdam, Mathematical preprint series 97-? submitted, 1997.
-
Periodic Points of Nonexpansive Maps and Nonlinear Generalizations of the Perron-Frobenius Theory
, pp. 1997
-
-
Nussbaum, R.D.1
Scheutzow, M.2
Verduyn Lunel, S.M.3
-
16
-
-
0009090036
-
A metric variant of Frobenius's theorem and some other remarks on positive matrices
-
[16] H.H. Schaefer, "A metric variant of Frobenius's theorem and some other remarks on positive matrices", Linear Algebra Appl. 42, (1982), 175-182.
-
(1982)
Linear Algebra Appl.
, vol.42
, pp. 175-182
-
-
Schaefer, H.H.1
-
19
-
-
84966212618
-
A nonlinear Perron-Frobenius theorem
-
[19] R. Sine, "A nonlinear Perron-Frobenius theorem", Proc. Amer. Math. Soc. 109, (1990), 331-336.
-
(1990)
Proc. Amer. Math. Soc.
, vol.109
, pp. 331-336
-
-
Sine, R.1
-
20
-
-
0003476784
-
-
Ph.D. dissertation, Univ. of Bremen, Germany
-
[20] D. Weller, Hilbert's metric, part metric and self mappings of a cone, Ph.D. dissertation, Univ. of Bremen, Germany, 1987.
-
Hilbert's Metric, Part Metric and Self Mappings of a Cone
, pp. 1987
-
-
Weller, D.1
|