메뉴 건너뛰기




Volumn 14, Issue 1, 1999, Pages 109-118

An objective method to modify numerical model forecasts with newly given weather data using an artificial neural network

Author keywords

[No Author keywords available]

Indexed keywords

MATHEMATICAL MODELS; NEURAL NETWORKS; NUMERICAL METHODS; PRECIPITATION (METEOROLOGY);

EID: 0033079831     PISSN: 08828156     EISSN: None     Source Type: Journal    
DOI: 10.1175/1520-0434(1999)014<0109:AOMTMN>2.0.CO;2     Document Type: Article
Times cited : (41)

References (12)
  • 1
    • 0003820443 scopus 로고
    • Mesoscale objective map analysis using weighted time-series observations
    • 60 pp. NTIS CŌM-73-10781
    • Barnes, S. L., 1973: Mesoscale objective map analysis using weighted time-series observations. NOAA Tech. Memo. ERLTM-NSSL-62, 60 pp. [NTIS CŌM-73-10781.]
    • (1973) NOAA Tech. Memo. ERLTM-NSSL-62
    • Barnes, S.L.1
  • 3
    • 0010124947 scopus 로고
    • Short-range forecasting
    • P S. Ray, Ed., Amer. Meteor. Soc.
    • Doswell, C. A., III, 1986: Short-range forecasting. Mesoscale Meteorology and Forecasting, P S. Ray, Ed., Amer. Meteor. Soc., 689-719.
    • (1986) Mesoscale Meteorology and Forecasting , pp. 689-719
    • Doswell C.A. III1
  • 4
    • 0000615669 scopus 로고
    • Function minimization by conjugate gradients
    • Fletcher, R., and C. M. Reeves, 1964: Function minimization by conjugate gradients. Comput. J., 7, 149-154.
    • (1964) Comput. J. , vol.7 , pp. 149-154
    • Fletcher, R.1    Reeves, C.M.2
  • 6
    • 0024783033 scopus 로고
    • An operational model of objective frontal analysis based on ECMWF products
    • Huber-Pock, F., and C. Kress, 1989: An operational model of objective frontal analysis based on ECMWF products. Meteor. Atmos. Phys., 40, 170-180.
    • (1989) Meteor. Atmos. Phys. , vol.40 , pp. 170-180
    • Huber-Pock, F.1    Kress, C.2
  • 8
    • 0039466244 scopus 로고    scopus 로고
    • A method for improving radar estimates of precipitation by comparing data from radars and raingauges
    • Makihara, Y., 1996: A method for improving radar estimates of precipitation by comparing data from radars and raingauges. J. Meteor. Soc. Japan, 74, 459-480.
    • (1996) J. Meteor. Soc. Japan , vol.74 , pp. 459-480
    • Makihara, Y.1
  • 9
    • 0030168818 scopus 로고    scopus 로고
    • Accuracy of Radar-AMeDAS precipitation
    • _, N. Uekiyo, A. Tabata, and Y. Abe, 1996: Accuracy of Radar-AMeDAS precipitation. IEICE Trans. Commun., E79-B, 751-762.
    • (1996) IEICE Trans. Commun. , vol.E79-B , pp. 751-762
    • Uekiyo, N.1    Tabata, A.2    Abe, Y.3
  • 10
    • 0001712213 scopus 로고    scopus 로고
    • A neural network for tornado prediction based on Doppler radar-derived attributes
    • Marzban, C., and G. J. Stumpf, 1996: A neural network for tornado prediction based on Doppler radar-derived attributes. J. Appl. Meteor., 35, 617-626.
    • (1996) J. Appl. Meteor. , vol.35 , pp. 617-626
    • Marzban, C.1    Stumpf, G.J.2
  • 11
    • 0031950036 scopus 로고    scopus 로고
    • A neural network for damaging wind prediction
    • _, and _, 1998: A neural network for damaging wind prediction. Wea. Forecasting, 13, 151-163.
    • (1998) Wea. Forecasting , vol.13 , pp. 151-163
  • 12
    • 0000954408 scopus 로고
    • A neural networks short-term forecast of significant thunderstorms
    • McCann, D. W., 1992: A neural networks short-term forecast of significant thunderstorms. Wea. Forecasting, 7, 525-534.
    • (1992) Wea. Forecasting , vol.7 , pp. 525-534
    • McCann, D.W.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.