메뉴 건너뛰기




Volumn 15, Issue 2, 1999, Pages 91-100

Evaluation of J integrals and stress intensity factors in a 2D quadratic boundary contour method

Author keywords

Boundary element methods; J integral; Stress intensity factor

Indexed keywords

INTEGRAL EQUATIONS; MATHEMATICAL TRANSFORMATIONS; POLYNOMIALS; PROBLEM SOLVING; STRESS INTENSITY FACTORS; THEOREM PROVING;

EID: 0033076756     PISSN: 10698299     EISSN: None     Source Type: Journal    
DOI: 10.1002/(sici)1099-0887(199902)15:2<91::aid-cnm226>3.0.co;2-q     Document Type: Article
Times cited : (5)

References (10)
  • 2
    • 0012574130 scopus 로고
    • Systematic conversion of boundary integrals to contour integrals
    • April, Structural Engineering, School of Civil and Environmental Engineering, Cornell University, Ithaca, NY, April
    • E. D. Lutz, A. Back, L. Gray and A. Ingraffea, 'Systematic conversion of boundary integrals to contour integrals' Technical Report, 92-6, April, Structural Engineering, School of Civil and Environmental Engineering, Cornell University, Ithaca, NY, April 1992.
    • (1992) Technical Report, 92-6
    • Lutz, E.D.1    Back, A.2    Gray, L.3    Ingraffea, A.4
  • 3
    • 0041332915 scopus 로고
    • Systematic derivation of contour integration formulae for laplace and elastostatic gradient BIE's
    • E. D. Lutz, 'Systematic derivation of contour integration formulae for Laplace and elastostatic gradient BIE's', Comput. Mech., 14, 339-353 (1994).
    • (1994) Comput. Mech. , vol.14 , pp. 339-353
    • Lutz, E.D.1
  • 4
    • 0028442887 scopus 로고
    • A novel boundary element method for linear elasticity with no numerical integration for two-dimensional and line integrals for three-dimensional problems
    • A. Nagarajan, E. Lutz and S. Mukherjee, 'A novel boundary element method for linear elasticity with no numerical integration for two-dimensional and line integrals for three-dimensional problems', J. Appl. Mech., 61, 264-269 (1994).
    • (1994) J. Appl. Mech. , vol.61 , pp. 264-269
    • Nagarajan, A.1    Lutz, E.2    Mukherjee, S.3
  • 5
    • 0001600671 scopus 로고    scopus 로고
    • The boundary contour method for two-dimensional linear elasticity with quadratic boundary elements
    • A.-V. Phan, S. Mukherjee and J. R. R. Mayer, 'The boundary contour method for two-dimensional linear elasticity with quadratic boundary elements', Comput. Mech., 20, 310-319 (1997).
    • (1997) Comput. Mech. , vol.20 , pp. 310-319
    • Phan, A.-V.1    Mukherjee, S.2    Mayer, J.R.R.3
  • 6
    • 0019546771 scopus 로고
    • Two-dimensional stress intensity factor computations using the boundary element method
    • G. E. Blandfbrd, A. R. Ingraffea and J. A. Liggett, 'Two-dimensional stress intensity factor computations using the boundary element method', Int. j. numer. methods eng., 17, 387-404 (1981).
    • (1981) Int. J. Numer. Methods Eng. , vol.17 , pp. 387-404
    • Blandfbrd, G.E.1    Ingraffea, A.R.2    Liggett, J.A.3
  • 7
    • 0000510481 scopus 로고
    • Hypersingular quarter-point boundary elements for crack problems
    • A. Saez, R. Gallego and J. Dominguez, 'Hypersingular quarter-point boundary elements for crack problems', Int. j. numer. methods eng., 38, 1681-1701 (1981).
    • (1981) Int. J. Numer. Methods Eng. , vol.38 , pp. 1681-1701
    • Saez, A.1    Gallego, R.2    Dominguez, J.3
  • 8
    • 0001851864 scopus 로고
    • An integral equation approach to boundary value problems of classical elastostatics
    • F. J. Rizzo, 'An integral equation approach to boundary value problems of classical elastostatics', Q. Appl. Math., 25, 83-95 (1967).
    • (1967) Q. Appl. Math. , vol.25 , pp. 83-95
    • Rizzo, F.J.1
  • 9
    • 84980287971 scopus 로고
    • A path-independent integral and the approximate analysis of strain concentration by notches and cracks
    • J. R. Rice, 'A path-independent integral and the approximate analysis of strain concentration by notches and cracks', J. Appl. Mech., 35, 379-386 (1968).
    • (1968) J. Appl. Mech. , vol.35 , pp. 379-386
    • Rice, J.R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.