메뉴 건너뛰기




Volumn 65, Issue 10, 1999, Pages 4404-4410

Identification of phytoplankton from flow cytometry data by using radial basis function neural networks

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL NEURAL NETWORK; FLOW CYTOMETRY; IDENTIFICATION METHOD; PHYTOPLANKTON;

EID: 0032832628     PISSN: 00992240     EISSN: None     Source Type: Journal    
DOI: 10.1128/aem.65.10.4404-4410.1999     Document Type: Article
Times cited : (46)

References (28)
  • 2
    • 0028203678 scopus 로고
    • Neural network analysis of flow cytometric data for five marine phytoplankton groups
    • Boddy, L., C. W. Morris, M. F. Wilkins, G. A. Tarran, and P. H. Burkill. 1994. Neural network analysis of flow cytometric data for five marine phytoplankton groups. Cytometry 15:283-293.
    • (1994) Cytometry , vol.15 , pp. 283-293
    • Boddy, L.1    Morris, C.W.2    Wilkins, M.F.3    Tarran, G.A.4    Burkill, P.H.5
  • 3
    • 0001794519 scopus 로고    scopus 로고
    • Artificial neural networks for pattern recognition
    • A. Fielding (ed.), Kluver, London, United Kingdom, in press
    • Boddy, L., and C. W. Morris. Artificial neural networks for pattern recognition. In A. Fielding (ed.), Machine learning methods for ecological applications. Kluver, London, United Kingdom, in press.
    • Machine Learning Methods for Ecological Applications
    • Boddy, L.1    Morris, C.W.2
  • 4
    • 0029669499 scopus 로고    scopus 로고
    • Discrimination of marine phytoplankton species through the statistical analysis of their flow cytometric signatures
    • Carr, M. R., G. A. Tarran, and P. H. Burkill. 1996. Discrimination of marine phytoplankton species through the statistical analysis of their flow cytometric signatures. J. Plankton Res. 18:1225-1238.
    • (1996) J. Plankton Res. , vol.18 , pp. 1225-1238
    • Carr, M.R.1    Tarran, G.A.2    Burkill, P.H.3
  • 5
    • 0001508542 scopus 로고
    • Narrow angle forward light scattering from individual algal cells: Implications for size and shape discrimination in flow cytometry
    • Cunningham, A., and G. A. Buonaccorsi. 1992. Narrow angle forward light scattering from individual algal cells: implications for size and shape discrimination in flow cytometry. J. Plankton Res. 14:223-234.
    • (1992) J. Plankton Res. , vol.14 , pp. 223-234
    • Cunningham, A.1    Buonaccorsi, G.A.2
  • 6
    • 0026603242 scopus 로고
    • Analysing multivariate flow cytometric data in aquatic sciences
    • Demers, S., J. Kim, P. Legendre, and L. Legendre. 1992. Analysing multivariate flow cytometric data in aquatic sciences. Cytometry 13:291-299.
    • (1992) Cytometry , vol.13 , pp. 291-299
    • Demers, S.1    J, K.2    Legendre, P.3    Legendre, L.4
  • 8
    • 0024723987 scopus 로고
    • Use of a neural network computer system for analysis of flow cytometric data of phytoplankton populations
    • Frankel, D. S., R. J. Olson, S. L. Frankel, and S. W. Chisholm. 1989. Use of a neural network computer system for analysis of flow cytometric data of phytoplankton populations. Cytometry 10:540-550.
    • (1989) Cytometry , vol.10 , pp. 540-550
    • Frankel, D.S.1    Olson, R.J.2    Frankel, S.L.3    Chisholm, S.W.4
  • 9
    • 0029873409 scopus 로고    scopus 로고
    • Application of neural networks to flow cytometry data analysis and real-time cell classification
    • Frankel, D. S., S. L. Frankel, B. J. Binder, and R. F. Vogt. 1996. Application of neural networks to flow cytometry data analysis and real-time cell classification. Cytometry 23:290-302.
    • (1996) Cytometry , vol.23 , pp. 290-302
    • Frankel, D.S.1    Frankel, S.L.2    Binder, B.J.3    Vogt, R.F.4
  • 10
    • 0001914227 scopus 로고
    • Culture of phytoplankton for feeding marine invertebrates
    • W. L. Smith and M. H. Chanley (ed.), Plenum Press, New York, N.Y.
    • Guillard, R. R. L. 1975. Culture of phytoplankton for feeding marine invertebrates, p. 29-60. In W. L. Smith and M. H. Chanley (ed.), Culture of marine invertebrate animals. Plenum Press, New York, N.Y.
    • (1975) Culture of Marine Invertebrate Animals , pp. 29-60
    • Guillard, R.R.L.1
  • 13
    • 85032752004 scopus 로고
    • Progress in supervised neural networks - What's new since Lippmann?
    • Hush, D. R., and B. G. Horne. 1993. Progress in supervised neural networks - what's new since Lippmann? IEEE Sig. Proc. Mag. 10:8-39.
    • (1993) IEEE Sig. Proc. Mag. , vol.10 , pp. 8-39
    • Hush, D.R.1    Horne, A.B.G.2
  • 15
    • 0023855839 scopus 로고
    • An introduction to neural computing
    • Kohonen, T. 1988. An introduction to neural computing. Neural Networks 1: 3-16.
    • (1988) Neural Networks , vol.1 , pp. 3-16
    • Kohonen, T.1
  • 17
    • 0025839504 scopus 로고
    • A gaussian potential function network with hierarchically self-organizing learning
    • Lee, S., and R. M. Kil. 1991. A gaussian potential function network with hierarchically self-organizing learning. Neural Networks 4:207-224.
    • (1991) Neural Networks , vol.4 , pp. 207-224
    • Lee, S.1    Kil, R.M.2
  • 18
    • 0031880802 scopus 로고    scopus 로고
    • Identification of species in the genus Pestalotiopsis from spore morphometric data: A comparison of some neural and non-neural methods
    • Morgan, A., L. Boddy, C. W. Morris, and J. E. M. Mordue. 1998. Identification of species in the genus Pestalotiopsis from spore morphometric data: a comparison of some neural and non-neural methods. Mycol. Res. 102: 975-984.
    • (1998) Mycol. Res. , vol.102 , pp. 975-984
    • Morgan, A.1    Boddy, L.2    Morris, C.W.3    Mordue, J.E.M.4
  • 19
    • 0030308704 scopus 로고    scopus 로고
    • Classification as unknown by RBF networks: Discriminating phytoplankton taxa from flow cytometry data
    • C. H. Dagli, M. Akay, C. L. P. Chen, B. R. Fernandez, and J. Ghosh (ed.), ASME Press, New York, N.Y.
    • Morris, C. W., and L. Boddy. 1996. Classification as unknown by RBF networks: discriminating phytoplankton taxa from flow cytometry data, p. 629-634. In C. H. Dagli, M. Akay, C. L. P. Chen, B. R. Fernandez, and J. Ghosh (ed.), Intelligent engineering systems through artificial neural networks, vol. 6. ASME Press, New York, N.Y.
    • (1996) Intelligent Engineering Systems Through Artificial Neural Networks , vol.6 , pp. 629-634
    • Morris, C.W.1    Boddy, L.2
  • 21
    • 0001595997 scopus 로고
    • Neural network classifiers estimate Bayesian a posteriori probabilities
    • Richard, M. D., and R. P. Lippmann. 1991. Neural network classifiers estimate Bayesian a posteriori probabilities. Neural Computation 3:461-483.
    • (1991) Neural Computation , vol.3 , pp. 461-483
    • Richard, M.D.1    Lippmann, R.P.2
  • 24
    • 0001396117 scopus 로고
    • Light limited cultures of the blue green alga Oscillatoria agardhii
    • van Llere, L., and L. R. Mur. 1978. Light limited cultures of the blue green alga Oscillatoria agardhii. Mii. Internat. Ver. Limnol. 21:158-167.
    • (1978) Mii. Internat. Ver. Limnol. , vol.21 , pp. 158-167
    • Llere, L.1    Mur, L.R.2
  • 25
    • 0000517353 scopus 로고
    • Improving the performance of radial basis function networks by learning center locations
    • Wettschereck, D., and T. Dietterich. 1992. Improving the performance of radial basis function networks by learning center locations. Adv. Neural Info. Proc. Syst. 4:1133-1140.
    • (1992) Adv. Neural Info. Proc. Syst. , vol.4 , pp. 1133-1140
    • Wettschereck, D.1    Dietterich, T.2
  • 26
    • 0041119552 scopus 로고
    • Video cytometric imaging implemented in the EurOPA flow cytometer - A novel method for identification of marine organisms
    • OSATES, Brest, France
    • Wietzorrek, J., M. Stadler, and V. Kachel. 1994. Video cytometric imaging implemented in the EurOPA flow cytometer - a novel method for identification of marine organisms, p. 689-695. In Proceedings of Oceans 94 OSATES. OSATES, Brest, France.
    • (1994) Proceedings of Oceans 94 OSATES , pp. 689-695
    • Wietzorrek, J.1    Stadler, M.2    Kachel, V.3
  • 27
    • 0028362299 scopus 로고
    • A comparison of radial basis function and backpropagation neural networks for identification of marine phytoplankton from multivariate flow cytometry data
    • Wilkins, M. F., C. W. Morris, and L. Boddy. 1994. A comparison of radial basis function and backpropagation neural networks for identification of marine phytoplankton from multivariate flow cytometry data. CABIOS 10: 285-294.
    • (1994) CABIOS , vol.10 , pp. 285-294
    • Wilkins, M.F.1    Morris, C.W.2    Boddy, L.3
  • 28
    • 0029919556 scopus 로고    scopus 로고
    • A comparison of some neural and non-neural methods for identification of phytoplankton from flow cytometry data
    • Wilkins, M. F., L. Boddy, C. W. Morris, and R. R. Jonker. 1996. A comparison of some neural and non-neural methods for identification of phytoplankton from flow cytometry data. CABIOS 12:9-18.
    • (1996) CABIOS , vol.12 , pp. 9-18
    • Wilkins, M.F.1    Boddy, L.2    Morris, C.W.3    Jonker, R.R.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.