메뉴 건너뛰기




Volumn 89, Issue 8, 1999, Pages 668-672

Moisture prediction from simple micrometeorological data

Author keywords

Disease forecasting; Leaf wetness; Partial leastsquares regression; Principal component regression; Ridge regression

Indexed keywords

METEOROLOGY;

EID: 0032813298     PISSN: 0031949X     EISSN: None     Source Type: Journal    
DOI: 10.1094/PHYTO.1999.89.8.668     Document Type: Article
Times cited : (29)

References (32)
  • 1
    • 0344738140 scopus 로고
    • Prediction of molecular weight and density of distillation fractions from gas chiomatographic-mass spectrometric detection and multivariate calibration
    • Brakstad, F., Karstang, T. V., Sorensen, J., and Steen, A. 1988. Prediction of molecular weight and density of distillation fractions from gas chiomatographic-mass spectrometric detection and multivariate calibration. Chemometrics Intelligent Lab. Syst. 3:321-328.
    • (1988) Chemometrics Intelligent Lab. Syst. , vol.3 , pp. 321-328
    • Brakstad, F.1    Karstang, T.V.2    Sorensen, J.3    Steen, A.4
  • 2
    • 0001003929 scopus 로고
    • Improved calibration for inductively coupled plasma-atomic emission spectrometry using generalized regression neural networks
    • Catasus, M., Branagh, W., and Salin, E. D. 1995. Improved calibration for inductively coupled plasma-atomic emission spectrometry using generalized regression neural networks. Appl. Spectrosc. 49:798-807.
    • (1995) Appl. Spectrosc. , vol.49 , pp. 798-807
    • Catasus, M.1    Branagh, W.2    Salin, E.D.3
  • 4
    • 0001262335 scopus 로고    scopus 로고
    • Conjugate gradient and approximate Newton methods for an optimal probabilistic neural network for food color classification
    • Chtioui, Y., Panigrahi, S., and Marsh, R. 1998. Conjugate gradient and approximate Newton methods for an optimal probabilistic neural network for food color classification. J. Opt. Eng. 37:3015-3023.
    • (1998) J. Opt. Eng. , vol.37 , pp. 3015-3023
    • Chtioui, Y.1    Panigrahi, S.2    Marsh, R.3
  • 5
    • 0005960796 scopus 로고
    • Forecasting dew duration at Pendleton, Oregon, using simple weather observations
    • Crowe, M. J., and Coakley, S. M. 1978. Forecasting dew duration at Pendleton, Oregon, using simple weather observations. J. Appl. Meteorol. 17:1482-1487.
    • (1978) J. Appl. Meteorol. , vol.17 , pp. 1482-1487
    • Crowe, M.J.1    Coakley, S.M.2
  • 6
    • 0008168997 scopus 로고
    • A new approach to recording the wetting parameter by the use of electrical resistance sensors
    • Davis, D. R., and Hughes, J. E. 1970. A new approach to recording the wetting parameter by the use of electrical resistance sensors. Plant Dis. Rep. 54:474-479.
    • (1970) Plant Dis. Rep. , vol.54 , pp. 474-479
    • Davis, D.R.1    Hughes, J.E.2
  • 7
    • 0343093274 scopus 로고
    • Challenge of bioassay plants in a monitored outdoor environment
    • Francl, L. J. 1995. Challenge of bioassay plants in a monitored outdoor environment. Can. J. Plant Pathol. 17:138-143.
    • (1995) Can. J. Plant Pathol. , vol.17 , pp. 138-143
    • Francl, L.J.1
  • 8
    • 0031592329 scopus 로고    scopus 로고
    • Artificial neural network models of wheat leaf wetness
    • Francl, L. J., and Panigrahi, S. 1997. Artificial neural network models of wheat leaf wetness. Agric. For. Meteorol. 88:57-65.
    • (1997) Agric. For. Meteorol. , vol.88 , pp. 57-65
    • Francl, L.J.1    Panigrahi, S.2
  • 9
    • 84952149204 scopus 로고
    • A statistical view of some chemometrics regression tools
    • Frank, I. E., and Friedman, J. H. 1993. A statistical view of some chemometrics regression tools. Technometrics 35:109-135.
    • (1993) Technometrics , vol.35 , pp. 109-135
    • Frank, I.E.1    Friedman, J.H.2
  • 10
    • 11144325691 scopus 로고
    • Partial least-squares regression: A tutorial
    • Geladi, P., and Kowalski, B. 1986. Partial least-squares regression: A tutorial. Anal. Chim. Acta. 185:1-17.
    • (1986) Anal. Chim. Acta. , vol.185 , pp. 1-17
    • Geladi, P.1    Kowalski, B.2
  • 11
    • 0000469201 scopus 로고
    • Adaptation of a dew estimation scheme to a new crop and site
    • Gillespie, T. J., and Barr, A. 1984. Adaptation of a dew estimation scheme to a new crop and site. Agric. Meteorol. 31:289-295.
    • (1984) Agric. Meteorol. , vol.31 , pp. 289-295
    • Gillespie, T.J.1    Barr, A.2
  • 12
    • 0000372740 scopus 로고
    • Sensing duration of leaf moisture retention using electrical impedance grids
    • Gillespie, T. J., and Kidd, G. E. 1978. Sensing duration of leaf moisture retention using electrical impedance grids. Can. J. Plant Sci. 58: 179-187.
    • (1978) Can. J. Plant Sci. , vol.58 , pp. 179-187
    • Gillespie, T.J.1    Kidd, G.E.2
  • 13
    • 0027528230 scopus 로고
    • Using operational weather data to schedule fungicide sprays on tomatoes in southern Ontario, Canada
    • Gillespie, T. J., Sristava, B., and Pitblado, R. E. 1993. Using operational weather data to schedule fungicide sprays on tomatoes in southern Ontario, Canada. J. Appl. Meteorol. 32:567-573.
    • (1993) J. Appl. Meteorol. , vol.32 , pp. 567-573
    • Gillespie, T.J.1    Sristava, B.2    Pitblado, R.E.3
  • 14
    • 0028317597 scopus 로고
    • Development and validation of an empirical model to estimate the duration of dew periods
    • Gleason, M. L., Taylor, S. E., Loughin, T. M., and Koehler, K. J. 1994. Development and validation of an empirical model to estimate the duration of dew periods. Plant Dis. 78:1011-1016.
    • (1994) Plant Dis. , vol.78 , pp. 1011-1016
    • Gleason, M.L.1    Taylor, S.E.2    Loughin, T.M.3    Koehler, K.J.4
  • 15
    • 84942484786 scopus 로고
    • Ridge regression: Biased estimation for nonorthogonal problems
    • Hoerl, A. E., and Kennard, R. W. 1970. Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12:55-67.
    • (1970) Technometrics , vol.12 , pp. 55-67
    • Hoerl, A.E.1    Kennard, R.W.2
  • 17
    • 0343257379 scopus 로고
    • A comparison of wetness sensors for use with computer or microprocessor systems designed for disease forecasting
    • Huband, N. D., and Butler, D. R. 1984. A comparison of wetness sensors for use with computer or microprocessor systems designed for disease forecasting. Proc. Br. Crop Prot. Conf. Pests Dis. 2:633-638.
    • (1984) Proc. Br. Crop Prot. Conf. Pests Dis. , vol.2 , pp. 633-638
    • Huband, N.D.1    Butler, D.R.2
  • 18
    • 0027012033 scopus 로고
    • Modeling leaf wetness in relation to plant disease epidemiology
    • Huber, L., and Gillespie, T. J. 1992. Modeling leaf wetness in relation to plant disease epidemiology. Annu. Rev. Phytopathol. 30:553-577.
    • (1992) Annu. Rev. Phytopathol. , vol.30 , pp. 553-577
    • Huber, L.1    Gillespie, T.J.2
  • 21
    • 0000957593 scopus 로고
    • Principal components regression in exploratory statistical research
    • Massy, M. F. 1965. Principal components regression in exploratory statistical research. J. Am. Stat. Assoc. 60:234-256.
    • (1965) J. Am. Stat. Assoc. , vol.60 , pp. 234-256
    • Massy, M.F.1
  • 24
    • 0029211186 scopus 로고
    • Computer-based neuro-vision system for color classification of french fries
    • Panigrahi, S., and Wiesenborn, D. 1994. Computer-based neuro-vision system for color classification of french fries. Pages 204-217 in: Proc. Opt. Agric. For. Biol. Proc. SPIE 2345.
    • (1994) Proc. Opt. Agric. For. Biol. Proc. Spie 2345 , pp. 204-217
    • Panigrahi, S.1    Wiesenborn, D.2
  • 25
    • 33646553393 scopus 로고
    • Estimating dew duration. I -Utilizing micrometeorological data
    • Pedro, M. J., and Gillespie, T. J. 1982. Estimating dew duration. I -Utilizing micrometeorological data. Agric. Meteorol. 25:283-296.
    • (1982) Agric. Meteorol. , vol.25 , pp. 283-296
    • Pedro, M.J.1    Gillespie, T.J.2
  • 26
    • 49049146552 scopus 로고
    • Estimating dew duration. II -Utilizing standard weather station data
    • Pedro, M. J., and Gillespie, T. J. 1982. Estimating dew duration. II -Utilizing standard weather station data. Agric. Meteorol. 25:297-310.
    • (1982) Agric. Meteorol. , vol.25 , pp. 297-310
    • Pedro, M.J.1    Gillespie, T.J.2
  • 29
    • 0026953153 scopus 로고
    • Mapping neural network derived from the Parzen window estimator
    • Schioler, H., and Hartmann, U. 1992. Mapping neural network derived from the Parzen window estimator. Neural Networks 5:903-909.
    • (1992) Neural Networks , vol.5 , pp. 903-909
    • Schioler, H.1    Hartmann, U.2
  • 30
    • 0026254768 scopus 로고
    • A general regression neural network
    • Specht, D. F. 1991. A general regression neural network. IEEE Trans. Neural Networks 2:568-576.
    • (1991) IEEE Trans. Neural Networks , vol.2 , pp. 568-576
    • Specht, D.F.1
  • 31
    • 0012858071 scopus 로고
    • Application of a new ridge regression method to a study of Bell system scale economies
    • Vinod, H. D. 1976. Application of a new ridge regression method to a study of Bell system scale economies. J. Am. Stat. Assoc. 71:835-841.
    • (1976) J. Am. Stat. Assoc. , vol.71 , pp. 835-841
    • Vinod, H.D.1
  • 32
    • 0000781020 scopus 로고
    • Partial least squares
    • S. Kotz and N. Johnson, eds. John Wiley & Sons, New York
    • Wold, H. 1985. Partial least squares. Pages 581-591 in: Encyclopedia of Statistical Science, Vol. 6. S. Kotz and N. Johnson, eds. John Wiley & Sons, New York.
    • (1985) Encyclopedia of Statistical Science , vol.6 , pp. 581-591
    • Wold, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.