메뉴 건너뛰기




Volumn 26, Issue 4, 1999, Pages 329-351

Gilmore-Gomory type traveling salesman problems

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; COMPUTATIONAL COMPLEXITY; MATRIX ALGEBRA; POLYNOMIALS; PROBLEM SOLVING;

EID: 0032805511     PISSN: 03050548     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0305-0548(98)00066-5     Document Type: Article
Times cited : (6)

References (30)
  • 4
    • 0009565449 scopus 로고
    • Assignment problems: Recent solution methods and applications
    • Prékopa A, Szelezan J. Strazicky B. editors. Budapest, Hungary, September 2-6
    • [4] Burkard RE. Assignment problems: recent solution methods and applications. In: Prékopa A, Szelezan J. Strazicky B. editors. System Modelling and Optimization: Proceedings of the 12th IFIP Conference, Budapest, Hungary, September 2-6, 1985. Lecture Notes in Control and Information Science, Vol. 84, Berlin: Springer, 1986;153-69.
    • (1985) System Modelling and Optimization: Proceedings of the 12th IFIP Conference
    • Burkard, R.E.1
  • 5
    • 0004050029 scopus 로고
    • Berlin: Springer
    • [4] Burkard RE. Assignment problems: recent solution methods and applications. In: Prékopa A, Szelezan J. Strazicky B. editors. System Modelling and Optimization: Proceedings of the 12th IFIP Conference, Budapest, Hungary, September 2-6, 1985. Lecture Notes in Control and Information Science, Vol. 84, Berlin: Springer, 1986;153-69.
    • (1986) Lecture Notes in Control and Information Science , vol.84 , pp. 153-169
  • 8
    • 0022751993 scopus 로고
    • Recognition of Gilmore-Gomory traveling salesman problem
    • [7] Chandrasekaran R. Recognition of Gilmore-Gomory traveling salesman problem. Discrete Applied Mathematics 1986;14:231-8.
    • (1986) Discrete Applied Mathematics , vol.14 , pp. 231-238
    • Chandrasekaran, R.1
  • 11
  • 15
    • 0001068310 scopus 로고
    • Sequencing a one state-variable machine: A solvable case of the traveling salesman problem
    • [14] Gilmore PC, Gomory RE. Sequencing a one state-variable machine: a solvable case of the traveling salesman problem. Operations Research 1964;12:655-79.
    • (1964) Operations Research , vol.12 , pp. 655-679
    • Gilmore, P.C.1    Gomory, R.E.2
  • 17
    • 0003780715 scopus 로고
    • Addison-Wesley, Reading, MA
    • [16] Harary F. Graph theory. Addison-Wesley, Reading, MA, 1969.
    • (1969) Graph Theory
    • Harary, F.1
  • 21
    • 0009640363 scopus 로고
    • Structure of the optimal solution of certain classes of traveling salesman problems
    • in Russian
    • [20] Klyaus PS. Structure of the optimal solution of certain classes of traveling salesman problems. Vesti Akad. Navuk BSSR, Ser. Fiz. - Mat Navuk. 1976;6:95-8 (in Russian).
    • (1976) Vesti Akad. Navuk BSSR, Ser. Fiz. - Mat Navuk , vol.6 , pp. 95-98
    • Klyaus, P.S.1
  • 22
    • 70350674995 scopus 로고
    • On the shortest spanning subtree of a graph and the traveling salesman problem
    • [21] Kruskal JB Jr. On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical Society 1956;7:48-50.
    • (1956) Proceedings of the American Mathematical Society , vol.7 , pp. 48-50
    • Kruskal J.B., Jr.1
  • 23
    • 0026880159 scopus 로고
    • The traveling salesman problem: An overview of exact and approximate algorithms
    • [22] Laporte G. The traveling salesman problem: an overview of exact and approximate algorithms, European Journal of Operational Research 1992;59:231-47.
    • (1992) European Journal of Operational Research , vol.59 , pp. 231-247
    • Laporte, G.1
  • 24
    • 0000055478 scopus 로고
    • Matroid matching and some applications
    • [23] Lovász L. Matroid matching and some applications, Journal of Combinatorial Theory 1980;B28:208-36.
    • (1980) Journal of Combinatorial Theory , vol.B28 , pp. 208-236
    • Lovász, L.1
  • 27
    • 0026284070 scopus 로고
    • A special case of the n-vertex traveling salesman problem that can be solved in O(n) time
    • [26] Park JK. A special case of the n-vertex traveling salesman problem that can be solved in O(n) time. Information Processing Letters 1991;40:247-54.
    • (1991) Information Processing Letters , vol.40 , pp. 247-254
    • Park, J.K.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.