메뉴 건너뛰기




Volumn 28, Issue 4-5, 1999, Pages 481-510

Multi-dimensional asymptotically stable finite difference schemes for the advection-diffusion equation

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; ASYMPTOTIC STABILITY; BOUNDARY CONDITIONS; COMPUTATIONAL GEOMETRY; DIFFERENTIATION (CALCULUS); EQUATIONS OF MOTION; FINITE DIFFERENCE METHOD; MATRIX ALGEBRA; PROBLEM SOLVING;

EID: 0032781947     PISSN: 00457930     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0045-7930(98)00042-5     Document Type: Article
Times cited : (8)

References (4)
  • 2
    • 0344478942 scopus 로고    scopus 로고
    • Multi-dimensional asymptotically stable 4th-order accurate schemes for the diffusion equation
    • ICASE Report no. 96-8, February 1996, also V.133
    • Abarbanel S, Ditkowski A. Multi-dimensional asymptotically stable 4th-order accurate schemes for the diffusion equation. ICASE Report no. 96-8, February 1996, also J. Comp. Physics, V.133, pp. 279-288 (1997).
    • (1997) J. Comp. Physics , pp. 279-288
    • Abarbanel, S.1    Ditkowski, A.2
  • 3
    • 84968486120 scopus 로고
    • Stability theory of difference approximations for mixed initial boundary value problems, II
    • Gustafsson B., Kreiss H.O., Sundström A. Stability theory of difference approximations for mixed initial boundary value problems, II. Math Comput. 26:1972;649-686.
    • (1972) Math Comput , vol.26 , pp. 649-686
    • Gustafsson, B.1    Kreiss, H.O.2    Sundström, A.3
  • 4
    • 0014752769 scopus 로고
    • Velocity profiles of flow at low reynolds numbers
    • Abarbanel S., Bennet S., Brandt A., Gillis J. Velocity profiles of flow at low reynolds numbers. J Appl Mech. 37E:(1):1970;1-3.
    • (1970) J Appl Mech , vol.37 , Issue.1 , pp. 1-3
    • Abarbanel, S.1    Bennet, S.2    Brandt, A.3    Gillis, J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.