-
2
-
-
0000096635
-
Strongly elliptic boundary integral equations
-
A. Iserles and M.J.D. Powell, eds., Oxford University Press
-
[2] W.L. Wendland, Strongly elliptic boundary integral equations, in: A. Iserles and M.J.D. Powell, eds., The State of the Art in Numerical Analysis, Vol. 9 of New Series (Oxford University Press, 1987) 511-562.
-
(1987)
The State of the Art in Numerical Analysis, Vol. 9 of New Series
, vol.9
, pp. 511-562
-
-
Wendland, W.L.1
-
3
-
-
0001415404
-
Hypersingular boundary integral equations: Their occurrence, interpretation, regularization and computation
-
P.K. Banerjee and S. Kobayashi, eds., Chap. 6 Elsevier Applied Science, London and New York
-
[3] G. Krishnasamy, F.J. Rizzo and T.J. Rudolphi, Hypersingular boundary integral equations: Their occurrence, interpretation, regularization and computation, in: P.K. Banerjee and S. Kobayashi, eds., Developments in Boundary Element Methods, Vol. 7, Chap. 6 (Elsevier Applied Science, London and New York, 1992) 207-252.
-
(1992)
Developments in Boundary Element Methods
, vol.7
, pp. 207-252
-
-
Krishnasamy, G.1
Rizzo, F.J.2
Rudolphi, T.J.3
-
4
-
-
0000135169
-
Regularization techniques applied to boundary element methods
-
cites 350 references
-
[4] M. Tanaka, V. Sladek and J. Sladek, Regularization techniques applied to boundary element methods, Appl. Mech. Rev. 47(10) (1994) 457-499 (cites 350 references).
-
(1994)
Appl. Mech. Rev.
, vol.47
, Issue.10
, pp. 457-499
-
-
Tanaka, M.1
Sladek, V.2
Sladek, J.3
-
6
-
-
0030165729
-
Hypersingular residuals - A new approach for error estimation in the boundary element method
-
[6] G.H. Paulino, L.J. Gray and V. Zarikian, Hypersingular residuals - A new approach for error estimation in the boundary element method, Int. J. Numer. Methods Engrg. 39(12) (1996) 2005-2029.
-
(1996)
Int. J. Numer. Methods Engrg.
, vol.39
, Issue.12
, pp. 2005-2029
-
-
Paulino, G.H.1
Gray, L.J.2
Zarikian, V.3
-
8
-
-
8544220284
-
Basic error estimates for elliptic problems
-
P.G. Ciarlet and J.L. Lions, eds., Elsevier Science Publishers B.V.
-
[8] P.G. Ciarlet, Basic error estimates for elliptic problems, in: P.G. Ciarlet and J.L. Lions, eds., Finite Element Methods (Part 1), Vol. 2 of Handbook of Numerical Analysis (Elsevier Science Publishers B.V., 1991).
-
(1991)
Finite Element Methods (Part 1), Vol. 2 of Handbook of Numerical Analysis
, vol.2
-
-
Ciarlet, P.G.1
-
9
-
-
0009522795
-
Introduction to adaptive methods for differential equations
-
A. Iserles, ed., Chap. 3 Cambridge University Press
-
[9] K. Eriksson, D. Estep, P. Hansbo and C. Johnson, Introduction to adaptive methods for differential equations, in: A. Iserles, ed., Acta Numerica 1995, Chap. 3 (Cambridge University Press, 1995) 105-158.
-
(1995)
Acta Numerica 1995
, pp. 105-158
-
-
Eriksson, K.1
Estep, D.2
Hansbo, P.3
Johnson, C.4
-
10
-
-
84972047848
-
Error analysis in boundary integral methods
-
A. Iserles, ed., Chap. 7 Cambridge University Press
-
[10] I.H. Sloan, Error analysis in boundary integral methods, in: A. Iserles, ed., Acta Numerica 1992, Chap. 7 (Cambridge University Press, 1992) 287-339.
-
(1992)
Acta Numerica 1992
, pp. 287-339
-
-
Sloan, I.H.1
-
11
-
-
0028742559
-
Recent studies on adaptive boundary element methods
-
[11] E. Kita and N. Kamiya, Recent studies on adaptive boundary element methods, Adv. Engrg. Software 19 (1994) 21-32.
-
(1994)
Adv. Engrg. Software
, vol.19
, pp. 21-32
-
-
Kita, E.1
Kamiya, N.2
-
12
-
-
0028747337
-
A review of error estimation and adaptivity in the boundary element method
-
[12] S. Liapis, A review of error estimation and adaptivity in the boundary element method, Engrg. Anal. Boundary Elem. 14(4) (1995) 315-323.
-
(1995)
Engrg. Anal. Boundary Elem.
, vol.14
, Issue.4
, pp. 315-323
-
-
Liapis, S.1
-
13
-
-
0030671811
-
Nodal sensitivities as error estimates in computational mechanics
-
[13] G.H. Paulino, F. Shi, S. Mukherjee and P. Ramesh, Nodal sensitivities as error estimates in computational mechanics, Acta Mech. 121(1-4) (1997) 191-213.
-
(1997)
Acta Mech.
, vol.121
, Issue.1-4
, pp. 191-213
-
-
Paulino, G.H.1
Shi, F.2
Mukherjee, S.3
Ramesh, P.4
-
14
-
-
0024673762
-
Adaptive h-, p-and hp-versions for boundary integral element methods
-
[14] E. Rank, Adaptive h-, p-and hp-versions for boundary integral element methods, Int. J. Numer. Methods Engrg. 28(6) (1989) 1335-1349.
-
(1989)
Int. J. Numer. Methods Engrg.
, vol.28
, Issue.6
, pp. 1335-1349
-
-
Rank, E.1
-
15
-
-
0001576476
-
Adaptive boundary element methods for strongly elliptic integral equations
-
[15] W.L. Wendland and D.-H. Yu, Adaptive boundary element methods for strongly elliptic integral equations, Numer. Math. 53 (1988) 539-558.
-
(1988)
Numer. Math.
, vol.53
, pp. 539-558
-
-
Wendland, W.L.1
Yu, D.-H.2
-
16
-
-
0001200610
-
A posteriori local error estimates of boundary element methods with some pseudo-differential equations on closed curves
-
[16] W.L. Wendland and D.-H. Yu, A posteriori local error estimates of boundary element methods with some pseudo-differential equations on closed curves, J. Comput. Math. 10(3) (1992) 273-289.
-
(1992)
J. Comput. Math.
, vol.10
, Issue.3
, pp. 273-289
-
-
Wendland, W.L.1
Yu, D.-H.2
-
17
-
-
0001245997
-
A posteriori error estimates and adaptive approaches for some boundary element methods
-
C. Brebbia, W.L. Wendland and G. Kuhn, eds, Computational Mechanics Publications, Springer-Verlag
-
[17] D.-H. Yu, A posteriori error estimates and adaptive approaches for some boundary element methods, in: C. Brebbia, W.L. Wendland and G. Kuhn, eds, Mathematical and Computational Aspects, Vol. 1 of Boundary Elements IX (Computational Mechanics Publications, Springer-Verlag, 1987) 241-256.
-
(1987)
Mathematical and Computational Aspects, Vol. 1 of Boundary Elements IX
, vol.1
, pp. 241-256
-
-
Yu, D.-H.1
-
18
-
-
0000367886
-
Self-adaptive boundary element methods
-
[18] D.-H. Yu, Self-adaptive boundary element methods, Z. Angew. Math. Mech. 68(5) (1988) T435-T437.
-
(1988)
Z. Angew. Math. Mech.
, vol.68
, Issue.5
-
-
Yu, D.-H.1
-
19
-
-
0002853579
-
Adaptive boundary element methods and adaptive finite element methods and boundary element coupling
-
M. Costabel, M. Dauge and S. Nicaise, eds., Marcel Dekker, Inc.
-
[19] C. Carstensen, Adaptive boundary element methods and adaptive finite element methods and boundary element coupling, in: M. Costabel, M. Dauge and S. Nicaise, eds., Boundary Value Problems and Integral Equations in Nonsmooth Domains (Marcel Dekker, Inc., 1995) 47-58.
-
(1995)
Boundary Value Problems and Integral Equations in Nonsmooth Domains
, pp. 47-58
-
-
Carstensen, C.1
-
20
-
-
0030369991
-
Efficiency of a posteriori BEM error estimates for first kind integral equations on quasi-uniform meshes
-
[20] C. Carstensen, Efficiency of a posteriori BEM error estimates for first kind integral equations on quasi-uniform meshes, Math. Comput. 65(213) (1996) 69-84.
-
(1996)
Math. Comput.
, vol.65
, Issue.213
, pp. 69-84
-
-
Carstensen, C.1
-
21
-
-
84968501793
-
A posteriori error estimates for boundary element methods
-
[21] C. Carstensen and E.P. Stephan, A posteriori error estimates for boundary element methods, Math. Comput. 64(210) (1995) 483-500.
-
(1995)
Math. Comput.
, vol.64
, Issue.210
, pp. 483-500
-
-
Carstensen, C.1
Stephan, E.P.2
-
22
-
-
0029220710
-
h-adaptive boundary element schemes
-
[22] C. Carstensen, D. Estep and P. Stephan, h-adaptive boundary element schemes, Comput. Mech. 15(4) (1995) 372-383.
-
(1995)
Comput. Mech.
, vol.15
, Issue.4
, pp. 372-383
-
-
Carstensen, C.1
Estep, D.2
Stephan, P.3
-
23
-
-
84979105733
-
On the integral equation method for the plane mixed boundary value problem for the Laplacian
-
[23] W.L. Wendland, E.P. Stephan and G.C. Hsiao, On the integral equation method for the plane mixed boundary value problem for the Laplacian, Math. Methods Appl. Sci. 1 (1979) 265-321.
-
(1979)
Math. Methods Appl. Sci.
, vol.1
, pp. 265-321
-
-
Wendland, W.L.1
Stephan, E.P.2
Hsiao, G.C.3
-
24
-
-
0001241551
-
Boundary integral equations for mixed boundary value problems in polygonal domains and Galerkin approximation
-
W. Fiszdon and K. Wilmanski, eds., Banach Center Publications
-
[24] M. Costabel and E. Stephan, Boundary integral equations for mixed boundary value problems in polygonal domains and Galerkin approximation, in: W. Fiszdon and K. Wilmanski, eds., Mathematical Models and Methods in Mechanics, Vol. 15 (Banach Center Publications, 1985).
-
(1985)
Mathematical Models and Methods in Mechanics
, vol.15
-
-
Costabel, M.1
Stephan, E.2
-
25
-
-
0039521386
-
-
Marcel Dekker Inc.
-
[25] M. Costabel, M. Dauge and S, Nicaise, eds., Boundary Value Problems and Integral Equations in Nonsmooth Domains, number 167 in Lecture Notes in Pure and Applied Mathematics (Marcel Dekker Inc., 1995).
-
(1995)
Boundary Value Problems and Integral Equations in Nonsmooth Domains, Number 167 in Lecture Notes in Pure and Applied Mathematics
-
-
Costabel, M.1
Dauge, M.2
Nicaise, S.3
-
26
-
-
0030189582
-
The h-p boundary element method for solving 2-and 3-dimensional problems
-
[26] E.P. Stephan, The h-p boundary element method for solving 2-and 3-dimensional problems, Comput. Methods Appl. Mech. Engrg. 133(3-4) (1996) 183-208.
-
(1996)
Comput. Methods Appl. Mech. Engrg.
, vol.133
, Issue.3-4
, pp. 183-208
-
-
Stephan, E.P.1
-
27
-
-
0001557093
-
Asymptotic and a posteriori error estimates for boundary element solutions of hypersingular integral equations
-
[27] M. Feistauer, G.C. Hsiao and R.E. Kleinman, Asymptotic and a posteriori error estimates for boundary element solutions of hypersingular integral equations, SIAM J. Numer. Anal. 33(2) (1996) 666-685.
-
(1996)
SIAM J. Numer. Anal.
, vol.33
, Issue.2
, pp. 666-685
-
-
Feistauer, M.1
Hsiao, G.C.2
Kleinman, R.E.3
-
28
-
-
0031377735
-
Superconvergence and the use of the residual as an error estimator in the BEM - I: Theoretical development
-
[28] M.A. Golberg and H. Bowman, Superconvergence and the use of the residual as an error estimator in the BEM - I: Theoretical development, Boundary Elem. Comm. 8(4) (1998) 230-238.
-
(1998)
Boundary Elem. Comm.
, vol.8
, Issue.4
, pp. 230-238
-
-
Golberg, M.A.1
Bowman, H.2
-
29
-
-
84897830766
-
Improvement by iteration for compact operator equations
-
[29] I.H. Sloan, Improvement by iteration for compact operator equations, Math. Comput. 30 (1976) 758-764.
-
(1976)
Math. Comput.
, vol.30
, pp. 758-764
-
-
Sloan, I.H.1
-
30
-
-
0012574090
-
Superconvergence
-
M.A. Golberg, ed., Chap. 2 Plenum Press, New York
-
[30] I.H. Sloan, Superconvergence, in: M.A. Golberg, ed., Numerical Solution of Integral Equations, Chap. 2 (Plenum Press, New York, 1990) 35-70.
-
(1990)
Numerical Solution of Integral Equations
, pp. 35-70
-
-
Sloan, I.H.1
-
34
-
-
0040086451
-
Symbolic computation of hypersingular boundary integrals
-
J.H. Kane, G. Maier, N. Tosaka and S.N. Atluri, eds., Springer-Verlag
-
[34] L.J. Gray, Symbolic computation of hypersingular boundary integrals, in: J.H. Kane, G. Maier, N. Tosaka and S.N. Atluri, eds., Advances in Boundary Element Techniques (Springer-Verlag, 1993) 157-172.
-
(1993)
Advances in Boundary Element Techniques
, pp. 157-172
-
-
Gray, L.J.1
-
35
-
-
0027577269
-
Singular and near singular integrals in the BEM: A global approach
-
[35] D. Rosen and D.E. Cormack, Singular and near singular integrals in the BEM: A global approach, SIAM J. Appl. Math. 53(2) (1993) 340-357.
-
(1993)
SIAM J. Appl. Math.
, vol.53
, Issue.2
, pp. 340-357
-
-
Rosen, D.1
Cormack, D.E.2
-
36
-
-
0026627073
-
Continuity requirements for density functions in the boundary element method
-
[36] G. Krishnasamy, F.J. Rizzo and T.J. Rudolphi, Continuity requirements for density functions in the boundary element method, Comput. Mech. 9(4) (1992) 267-284.
-
(1992)
Comput. Mech.
, vol.9
, Issue.4
, pp. 267-284
-
-
Krishnasamy, G.1
Rizzo, F.J.2
Rudolphi, T.J.3
-
37
-
-
0030083910
-
Hypersingular integrals: How smooth must the density be?
-
[37] P.A. Martin and F.J. Rizzo, Hypersingular integrals: how smooth must the density be? Int. J. Numer. Methods Engrg. 39(4) (1996) 687-704.
-
(1996)
Int. J. Numer. Methods Engrg.
, vol.39
, Issue.4
, pp. 687-704
-
-
Martin, P.A.1
Rizzo, F.J.2
-
38
-
-
0040706717
-
-
Report 98-01, Department of Mechanical Engineering, Vanderbilt University, Nashville, TN 37235, USA
-
[38] T.A. Cruse and J.D. Richardson, Self-regularized gradient potential formulation. Report 98-01, Department of Mechanical Engineering, Vanderbilt University, Nashville, TN 37235, USA, 1998.
-
(1998)
Self-regularized Gradient Potential Formulation
-
-
Cruse, T.A.1
Richardson, J.D.2
-
39
-
-
0012103439
-
Pseudo-differential operators
-
Courant Institute of Mathematics
-
[39] K.O. Friedrichs, Pseudo-differential Operators. Courant Institute of Mathematics, Lecture Notes, 1970.
-
(1970)
Lecture Notes
-
-
Friedrichs, K.O.1
-
40
-
-
0038928784
-
Numerical solutions of harmonic and biharmonic canonical integral equations in interior or exterior circular domains
-
[40] D.-H. Yu, Numerical solutions of harmonic and biharmonic canonical integral equations in interior or exterior circular domains, J. Comput. Math. 1 (1983) 52-62.
-
(1983)
J. Comput. Math.
, vol.1
, pp. 52-62
-
-
Yu, D.-H.1
-
43
-
-
0026946967
-
Three-dimensional fracture simulation with a single-domain direct boundary element formulation
-
[43] L.F. Martha, L.J. Gray and A.R. Ingraffea, Three-dimensional fracture simulation with a single-domain direct boundary element formulation, Int. J. Numer. Methods Engrg. 35(9) (1992) 1907-1921.
-
(1992)
Int. J. Numer. Methods Engrg.
, vol.35
, Issue.9
, pp. 1907-1921
-
-
Martha, L.F.1
Gray, L.J.2
Ingraffea, A.R.3
-
44
-
-
0027832142
-
Hypersingular integral equations and superaccurate stress evaluation
-
C.A. Brebbia and J.J. Rencis, eds., Computational Mechanics Publications, Southampton, and Elsevier Science Publishers, London
-
[44] M. Guiggiani, Hypersingular integral equations and superaccurate stress evaluation, in: C.A. Brebbia and J.J. Rencis, eds., Fluid Flow and Computational Aspects, Vol. 1 of Boundary Elements XV (Computational Mechanics Publications, Southampton, and Elsevier Science Publishers, London, 1993) 413-428.
-
(1993)
Fluid Flow and Computational Aspects, Vol. 1 of Boundary Elements XV
, vol.1
, pp. 413-428
-
-
Guiggiani, M.1
-
45
-
-
70350504045
-
Local behavior in finite element methods
-
P.G. Ciarlet and J.L. Lions, eds., Elsevier Science Publishers B.V.
-
[45] L.B. Wahlbin, Local behavior in finite element methods, in: P.G. Ciarlet and J.L. Lions, eds., Finite Element Methods (Part 1), Vol. 2 of Handbook of Numerical Analysis (Elsevier Science Publishers B.V., 1991).
-
(1991)
Finite Element Methods (Part 1), Vol. 2 of Handbook of Numerical Analysis
, vol.2
-
-
Wahlbin, L.B.1
-
47
-
-
0026905548
-
A Galerkin symmetric boundary-element method in elasticity: Formulation and implementation
-
[47] S. Sirtori, G. Maier, G. Novati and S. Miccoli, A Galerkin symmetric boundary-element method in elasticity: formulation and implementation, Int. J. Numer. Methods Engrg. 35 (1992) 255-282.
-
(1992)
Int. J. Numer. Methods Engrg.
, vol.35
, pp. 255-282
-
-
Sirtori, S.1
Maier, G.2
Novati, G.3
Miccoli, S.4
-
48
-
-
0039521387
-
Galerkin residuals for adaptive Galerkin-boundary element methods
-
in press
-
[48] G.H. Paulino and L.J. Gray, Galerkin residuals for adaptive Galerkin-boundary element methods, ASCE J. Engrg. Mech., in press.
-
ASCE J. Engrg. Mech.
-
-
Paulino, G.H.1
Gray, L.J.2
-
50
-
-
0021214562
-
Superconvergence results for the iterated projection method applied to a Fredholm integral equation of the second kind and the corresponding eigenvalue problem
-
[50] F. Chatelin and B. Lebbar, Superconvergence results for the iterated projection method applied to a Fredholm integral equation of the second kind and the corresponding eigenvalue problem, J. Integral Eqns. 6 (1984) 71-91.
-
(1984)
J. Integral Eqns.
, vol.6
, pp. 71-91
-
-
Chatelin, F.1
Lebbar, B.2
-
51
-
-
0038912198
-
Iterated Galerkin versus iterated collocation for integral equations of the second kind
-
[51] I.G. Graham, S. Joe and I.H. Sloan, Iterated Galerkin versus iterated collocation for integral equations of the second kind, IMA J. Numer. Anal. 5 (1985) 355-369.
-
(1985)
IMA J. Numer. Anal.
, vol.5
, pp. 355-369
-
-
Graham, I.G.1
Joe, S.2
Sloan, I.H.3
-
52
-
-
84968495070
-
The K-operator and the Galerkin method for strongly elliptic equations on smooth curves: Local estimates
-
[52] T. Tran, The K-operator and the Galerkin method for strongly elliptic equations on smooth curves: local estimates, Math. Comput. 64(210) (1995) 501-513.
-
(1995)
Math. Comput.
, vol.64
, Issue.210
, pp. 501-513
-
-
Tran, T.1
|