메뉴 건너뛰기




Volumn 7, Issue 3, 1999, Pages 271-285

Convex-set-based fuzzy clustering

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; CONSTRAINT THEORY; MEMBERSHIP FUNCTIONS; NEURAL NETWORKS; PROBABILITY; SET THEORY;

EID: 0032687297     PISSN: 10636706     EISSN: None     Source Type: Journal    
DOI: 10.1109/91.771084     Document Type: Article
Times cited : (23)

References (42)
  • 1
    • 0019438013 scopus 로고
    • A clustering performance measure based on fuzzy set decomposition
    • E. Backer and A. Jain, "A clustering performance measure based on fuzzy set decomposition," IEEE Trans. Pattern Anal. Mach. Intell., vol. PAMI-3, pp. 66-74, 1981.
    • (1981) IEEE Trans. Pattern Anal. Mach. Intell. , vol.PAMI-3 , pp. 66-74
    • Backer, E.1    Jain, A.2
  • 6
    • 0029752880 scopus 로고    scopus 로고
    • A self-organizing network for hyperellipsoidal clustering
    • Jan.
    • J. Mao and A. Jain, "A self-organizing network for hyperellipsoidal clustering," IEEE Trans. Neural Networks, vol. 7, pp. 16-29, Jan. 1996.
    • (1996) IEEE Trans. Neural Networks , vol.7 , pp. 16-29
    • Mao, J.1    Jain, A.2
  • 7
    • 0014534297 scopus 로고
    • A new approach to clustering
    • July
    • E. Ruspini, "A new approach to clustering," Inform. Contr., vol. 15, no. 1, pp. 22-32, July 1969.
    • (1969) Inform. Contr. , vol.15 , Issue.1 , pp. 22-32
    • Ruspini, E.1
  • 9
    • 0026927872 scopus 로고
    • Numerical convergence and interpretation of the fuzzy C-shells clustering algorithm
    • Sept.
    • J. Bezdek and R. Hathaway, "Numerical convergence and interpretation of the fuzzy C-shells clustering algorithm," IEEE Trans. Neural Networks, vol. 3, pp. 787-793, Sept. 1992.
    • (1992) IEEE Trans. Neural Networks , vol.3 , pp. 787-793
    • Bezdek, J.1    Hathaway, R.2
  • 10
    • 84958481530 scopus 로고
    • Use of the adaptive fuzzy clustering algorithm to detect lines in digital images
    • R. Dave, "Use of the adaptive fuzzy clustering algorithm to detect lines in digital images," in Proc. SPIE Conf. Intell. Robots Comput. Vision, 1989, vol. 1192, no. 2, pp. 600-611.
    • (1989) Proc. SPIE Conf. Intell. Robots Comput. Vision , vol.1192 , Issue.2 , pp. 600-611
    • Dave, R.1
  • 11
    • 84972811713 scopus 로고
    • Fuzzy-shell clustering and applications to circle detection in digital images
    • _, "Fuzzy-shell clustering and applications to circle detection in digital images," Int. J. Gen. Syst., vol. 16, pp. 343-355, 1990.
    • (1990) Int. J. Gen. Syst. , vol.16 , pp. 343-355
  • 12
    • 0026627626 scopus 로고
    • New measures for evaluating fuzzy partitions induced through C-shells clustering
    • Boston, MA, Nov.
    • _, "New measures for evaluating fuzzy partitions induced through C-shells clustering," in Proc. SPIE Conf. Intell. Robots Comput. Vision X: Algorithms Tech., Boston, MA, Nov. 1991, pp. 406-414.
    • (1991) Proc. SPIE Conf. Intell. Robots Comput. Vision X: Algorithms Tech. , pp. 406-414
  • 13
    • 0027221185 scopus 로고
    • Robust fuzzy clustering algorithms
    • San Francisco, CA, Mar.-Apr.
    • _, "Robust fuzzy clustering algorithms," in Proc. 2nd IEEE Int. Conf. Fuzzy Syst., San Francisco, CA, Mar.-Apr. 1993, vol. I, pp. 1281-1286.
    • (1993) Proc. 2nd IEEE Int. Conf. Fuzzy Syst. , vol.1 , pp. 1281-1286
  • 14
    • 0026925323 scopus 로고
    • Adaptive C-shell clustering and detection of ellipses
    • Sept.
    • R. Dave and K. Bhaswan, "Adaptive C-shell clustering and detection of ellipses," IEEE Trans. Neural Networks, vol. 3, pp. 643-662, Sept. 1992.
    • (1992) IEEE Trans. Neural Networks , vol.3 , pp. 643-662
    • Dave, R.1    Bhaswan, K.2
  • 16
    • 0018057468 scopus 로고
    • Fuzzy clustering with a fuzzy covariance matrix
    • San Diego, CA
    • E. Gustafson and W. Kessel, "Fuzzy clustering with a fuzzy covariance matrix," in Proc. IEEE Conf. Decision Contr., San Diego, CA, 1979, pp. 761-766.
    • (1979) Proc. IEEE Conf. Decision Contr. , pp. 761-766
    • Gustafson, E.1    Kessel, W.2
  • 18
    • 0029245943 scopus 로고
    • Fuzzy and possibilistic shell clustering algorithms and their application to boundary detection and surface approximation - Part I
    • Feb.
    • _, "Fuzzy and possibilistic shell clustering algorithms and their application to boundary detection and surface approximation - Part I," IEEE Trans. Fuzzy Syst., vol. 3, pp. 29-43, Feb. 1995.
    • (1995) IEEE Trans. Fuzzy Syst. , vol.3 , pp. 29-43
  • 19
    • 0029246295 scopus 로고
    • Fuzzy and possibilistic shell clustering algorithms and their application to boundary detection and surface approximation - Part II
    • Feb.
    • _, "Fuzzy and possibilistic shell clustering algorithms and their application to boundary detection and surface approximation - Part II," IEEE Trans. Fuzzy Syst., vol. 3, pp. 44-60, Feb. 1995.
    • (1995) IEEE Trans. Fuzzy Syst. , vol.3 , pp. 44-60
  • 20
    • 0027595430 scopus 로고
    • A possibilistic approach to clustering
    • May
    • R. Krishnapuram and J. Keller, "A possibilistic approach to clustering," IEEE Trans. Fuzzy Syst., vol. 1, pp. 98-110, May 1993.
    • (1993) IEEE Trans. Fuzzy Syst. , vol.1 , pp. 98-110
    • Krishnapuram, R.1    Keller, J.2
  • 21
    • 0026927204 scopus 로고
    • The fuzzy C spherical shells algorithm: A new approach
    • Sept.
    • R. Krishnapuram, O. Nasraoui, and H. Frigui, "The fuzzy C spherical shells algorithm: A new approach," IEEE Trans. Neural Networks, vol. 3, pp. 787-793, Sept. 1992.
    • (1992) IEEE Trans. Neural Networks , vol.3 , pp. 787-793
    • Krishnapuram, R.1    Nasraoui, O.2    Frigui, H.3
  • 22
    • 49349133217 scopus 로고
    • Fuzzy sets as a basis for a theory of possibility
    • L. Zadeh, "Fuzzy sets as a basis for a theory of possibility," Fuzzy Sets Syst., vol. 1, pp. 3-28, 1978.
    • (1978) Fuzzy Sets Syst. , vol.1 , pp. 3-28
    • Zadeh, L.1
  • 23
    • 0001096516 scopus 로고
    • The theory of approximate reasoning
    • J. Hayes, D. Michie, and L. Mikulich, Eds. New York: Halstead
    • _, "The theory of approximate reasoning," in Machine Intelligence - Volume 9, J. Hayes, D. Michie, and L. Mikulich, Eds. New York: Halstead, 1979, pp. 149-194.
    • (1979) Machine Intelligence - Volume 9 , vol.9 , pp. 149-194
  • 24
    • 0029242750 scopus 로고
    • A method for fuzzy rules extraction directly from numerical data and its application to pattern classification
    • Feb.
    • S. Abe and M. Lan, "A method for fuzzy rules extraction directly from numerical data and its application to pattern classification," IEEE Trans. Fuzzy Syst., vol. 3, pp. 18-28, Feb. 1995.
    • (1995) IEEE Trans. Fuzzy Syst. , vol.3 , pp. 18-28
    • Abe, S.1    Lan, M.2
  • 25
    • 0026927202 scopus 로고
    • Fuzzy min-max neural networks - Part 1: Classification
    • Sept.
    • P. Simpson, "Fuzzy min-max neural networks - Part 1: Classification," IEEE Trans. Neural Networks, vol. 3, pp. 776-786, Sept. 1992.
    • (1992) IEEE Trans. Neural Networks , vol.3 , pp. 776-786
    • Simpson, P.1
  • 26
    • 0027542561 scopus 로고
    • Fuzzy min-max neural networks - Part 2: Clustering
    • May
    • _, "Fuzzy min-max neural networks - Part 2: Clustering," IEEE Trans. Fuzzy Syst., vol. 1, pp. 32-45, May 1993.
    • (1993) IEEE Trans. Fuzzy Syst. , vol.1 , pp. 32-45
  • 27
    • 0026408256 scopus 로고
    • Fuzzy ART: Fast stable learning and categorization of analog patterns by an adaptive resonance system
    • G. Carpenter, S. Grossberg, and D. Rosen, "Fuzzy ART: Fast stable learning and categorization of analog patterns by an adaptive resonance system," Neural Networks, vol. 4, pp. 4759-771, 1991.
    • (1991) Neural Networks , vol.4 , pp. 4759-4771
    • Carpenter, G.1    Grossberg, S.2    Rosen, D.3
  • 28
    • 0026923589 scopus 로고
    • Fuzzy ARTMAP: A neural network architecture for incremental supervised learning of analog multidimensional maps
    • Sept.
    • G. Carpenter, S. Grossberg, N. Markuzon, J. Reynolds, and D. Rosen, "Fuzzy ARTMAP: A neural network architecture for incremental supervised learning of analog multidimensional maps," IEEE Trans. Neural Networks, vol. 3, pp. 698-713, Sept. 1992.
    • (1992) IEEE Trans. Neural Networks , vol.3 , pp. 698-713
    • Carpenter, G.1    Grossberg, S.2    Markuzon, N.3    Reynolds, J.4    Rosen, D.5
  • 30
    • 27944438625 scopus 로고    scopus 로고
    • Fuzzy clustering involving convex polytopes
    • New Orleans, LA, Sept. 8-11
    • I. H. Suh, J. H. Kim, and F. C.-H. Rhee, "Fuzzy clustering involving convex polytopes," in Proc. 1996 Int. Conf. Fuzzy Syst., New Orleans, LA, vol. III, pp. 2014-2019, Sept. 8-11, 1996.
    • (1996) Proc. 1996 Int. Conf. Fuzzy Syst. , vol.3 , pp. 2014-2019
    • Suh, I.H.1    Kim, J.H.2    Rhee, F.C.-H.3
  • 33
    • 0022162187 scopus 로고
    • Quantifying vagueness in decision models
    • H. Zimmermann and P. Zysno, "Quantifying vagueness in decision models," Eur. J. Operat. Res., vol. 22, pp. 148-158, 1985.
    • (1985) Eur. J. Operat. Res. , vol.22 , pp. 148-158
    • Zimmermann, H.1    Zysno, P.2
  • 34
    • 0000743235 scopus 로고
    • State of the art in pattern recognition
    • May
    • G. Nagy, "State of the art in pattern recognition," Proc. IEEE, vol. 56, pp. 836-882, May 1968.
    • (1968) Proc. IEEE , vol.56 , pp. 836-882
    • Nagy, G.1
  • 36
    • 0000764772 scopus 로고
    • The use of multiple measurements in taxonomic problems
    • R. Fisher, "The use of multiple measurements in taxonomic problems," Ann. Eugen., vol. 7, pt. II, pp. 179-188, 1936.
    • (1936) Ann. Eugen. , vol.7 , Issue.2 PART , pp. 179-188
    • Fisher, R.1
  • 38
    • 0026398044 scopus 로고
    • Self-organizing leader clustering in a neural network using a fuzzy learning rule
    • July
    • S. Newton and S. Mitra, "Self-organizing leader clustering in a neural network using a fuzzy learning rule," SPIE Proc. Adaptive Signal Processing, vol. 1565, July 1991.
    • (1991) SPIE Proc. Adaptive Signal Processing , vol.1565
    • Newton, S.1    Mitra, S.2
  • 39
    • 0026925618 scopus 로고
    • Adaptive fuzzy leader clustering of complex data sets in pattern recognition
    • Sept.
    • S. Newton, S. Pemmaraju, and S. Mitra, "Adaptive fuzzy leader clustering of complex data sets in pattern recognition," IEEE Trans. Neural Networks, vol. 3, pp. 794-800, Sept. 1992.
    • (1992) IEEE Trans. Neural Networks , vol.3 , pp. 794-800
    • Newton, S.1    Pemmaraju, S.2    Mitra, S.3
  • 40
    • 0028425805 scopus 로고
    • Feature-preserving clustering of 2-D Data for two-class problems using analytical formulas: An automatic and fast approach
    • May
    • J.-C. Lin and W.-H. Tsai, "Feature-preserving clustering of 2-D Data for two-class problems using analytical formulas: An automatic and fast approach," IEEE Trans. Pattern Anal. Mach. Intell., vol. 16, pp. 554-560, May 1994.
    • (1994) IEEE Trans. Pattern Anal. Mach. Intell. , vol.16 , pp. 554-560
    • Lin, J.-C.1    Tsai, W.-H.2
  • 41
    • 0031139176 scopus 로고    scopus 로고
    • Robust clustering methods: A unified view
    • May
    • R. Dave and R. Krishnapuram, "Robust clustering methods: A unified view," IEEE Trans. Fuzzy Syst., vol. 5, pp. 270-293, May 1997.
    • (1997) IEEE Trans. Fuzzy Syst. , vol.5 , pp. 270-293
    • Dave, R.1    Krishnapuram, R.2
  • 42
    • 0002619682 scopus 로고
    • Fusion technology for fuzzy theory and neural network: Survey and future directions
    • Iizuka, Japan, July
    • H. Tagaki, "Fusion technology for fuzzy theory and neural network: Survey and future directions," in Proc. Int. Conf. Fuzzy Logic Neural Networks, Iizuka, Japan, July 1990, pp. 13-26.
    • (1990) Proc. Int. Conf. Fuzzy Logic Neural Networks , pp. 13-26
    • Tagaki, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.