-
2
-
-
0028442887
-
A novel boundary element method for linear elasticity with no numerical integration for two-dimensional and line integrals for three-dimensional problems
-
[2] A. Nagarajan, E.D. Lutz and S. Mukherjee, A novel boundary element method for linear elasticity with no numerical integration for two-dimensional and line integrals for three-dimensional problems, ASME J. Appl. Mech. 61 (1994) 264-269.
-
(1994)
ASME J. Appl. Mech.
, vol.61
, pp. 264-269
-
-
Nagarajan, A.1
Lutz, E.D.2
Mukherjee, S.3
-
3
-
-
0001752979
-
The boundary contour method for three-dimensional linear elasticity
-
[3] A. Nagarajan, E.D. Lutz and S. Mukherjee, The boundary contour method for three-dimensional linear elasticity, ASME J. Appl. Mech. 63 (1996) 278-286.
-
(1996)
ASME J. Appl. Mech.
, vol.63
, pp. 278-286
-
-
Nagarajan, A.1
Lutz, E.D.2
Mukherjee, S.3
-
4
-
-
0004048031
-
-
Ph.D. Dissertation, Cornell University, Ithaca, NY
-
[4] E.D. Lutz, Numerical methods for hypersingular and near-singular boundary integrals in fracture mechanics, Ph.D. Dissertation, Cornell University, Ithaca, NY, 1991.
-
(1991)
Numerical Methods for Hypersingular and Near-singular Boundary Integrals in Fracture Mechanics
-
-
Lutz, E.D.1
-
5
-
-
0001600671
-
The boundary contour method for two-dimensional linear elasticity with quadratic boundary elements
-
[5] A.V. Phan, S. Mukherjee and J.R.R. Mayer, The boundary contour method for two-dimensional linear elasticity with quadratic boundary elements, Comput. Mech. 20 (1997) 310-319.
-
(1997)
Comput. Mech.
, vol.20
, pp. 310-319
-
-
Phan, A.V.1
Mukherjee, S.2
Mayer, J.R.R.3
-
6
-
-
0031175457
-
The boundary contour method for three-dimensional linear elasticity with a new quadratic boundary element
-
[6] Y.X. Mukherjee, S. Mukherjee, X. Shi and A. Nagarajati, The boundary contour method for three-dimensional linear elasticity with a new quadratic boundary element, Engrg. Anal. Boundary Elem. 20 (1997) 35-44.
-
(1997)
Engrg. Anal. Boundary Elem.
, vol.20
, pp. 35-44
-
-
Mukherjee, Y.X.1
Mukherjee, S.2
Shi, X.3
Nagarajati, A.4
-
7
-
-
0032083903
-
A boundary contour formulation for design sensitivity analysis in two-dimensional linear elasticity
-
[7] A.V. Phan, S. Mukherjee and J.R.R. Mayer, A boundary contour formulation for design sensitivity analysis in two-dimensional linear elasticity, Int. J. Solids Struct. 35 (1998) 1981-1999.
-
(1998)
Int. J. Solids Struct.
, vol.35
, pp. 1981-1999
-
-
Phan, A.V.1
Mukherjee, S.2
Mayer, J.R.R.3
-
8
-
-
0031619329
-
The hypersingular boundary contour method for two-dimensional linear elasticity
-
[8] A.V. Phan, S. Mukherjee and J.R.R. Mayer, The hypersingular boundary contour method for two-dimensional linear elasticity, Acta Mechanica 130 (1998) 209-225.
-
(1998)
Acta Mechanica
, vol.130
, pp. 209-225
-
-
Phan, A.V.1
Mukherjee, S.2
Mayer, J.R.R.3
-
9
-
-
0001200340
-
The hypersingular boundary contour method for three dimensional linear elasticity
-
[9] S. Mukherjee and Y.X. Mukherjee, The hypersingular boundary contour method for three dimensional linear elasticity, ASME J. Appl. Mech. 65 (1998) 300-309.
-
(1998)
ASME J. Appl. Mech.
, vol.65
, pp. 300-309
-
-
Mukherjee, S.1
Mukherjee, Y.X.2
-
11
-
-
0001851864
-
An integral equation approach to boundary value problems of classical elastostatics
-
[11] F.J. Rizzo, An integral equation approach to boundary value problems of classical elastostatics, Qtly. Appl. Math. 25 (1967) 83-95.
-
(1967)
Qtly. Appl. Math.
, vol.25
, pp. 83-95
-
-
Rizzo, F.J.1
-
12
-
-
0029212917
-
Computation of energy release rate using material differentiation of elastic BIE for 3-D elastic fracture
-
[12] M. Bonnet and H. Xiao, Computation of energy release rate using material differentiation of elastic BIE for 3-D elastic fracture, Engrg. Anal. Boundary Elem. 15 (1995) 137-149.
-
(1995)
Engrg. Anal. Boundary Elem.
, vol.15
, pp. 137-149
-
-
Bonnet, M.1
Xiao, H.2
-
13
-
-
0000456005
-
Time derivatives of integrals and functionals defined on varying volume and surface elements
-
[13] H. Petryk and Z. Mróz, Time derivatives of integrals and functionals defined on varying volume and surface elements, Arch. Mech. 5-6 (1986) 697-724.
-
(1986)
Arch. Mech.
, vol.5-6
, pp. 697-724
-
-
Petryk, H.1
Mróz, Z.2
-
14
-
-
0028494767
-
Hypersingular and finite part integrals in the boundary element method
-
[14] K.-C. Toh and S. Mukherjee, Hypersingular and finite part integrals in the boundary element method, Int. J. Solids Struct. 31 (1994) 2299-2312.
-
(1994)
Int. J. Solids Struct.
, vol.31
, pp. 2299-2312
-
-
Toh, K.-C.1
Mukherjee, S.2
|