메뉴 건너뛰기




Volumn 173, Issue 3-4, 1999, Pages 387-402

Surface variables and their sensitivities in three-dimensional linear elasticity by the boundary contour method

Author keywords

[No Author keywords available]

Indexed keywords

BOUNDARY ELEMENT METHOD; INTEGRAL EQUATIONS; SENSITIVITY ANALYSIS;

EID: 0032675820     PISSN: 00457825     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0045-7825(99)80004-8     Document Type: Article
Times cited : (8)

References (16)
  • 2
    • 0028442887 scopus 로고
    • A novel boundary element method for linear elasticity with no numerical integration for two-dimensional and line integrals for three-dimensional problems
    • [2] A. Nagarajan, E.D. Lutz and S. Mukherjee, A novel boundary element method for linear elasticity with no numerical integration for two-dimensional and line integrals for three-dimensional problems, ASME J. Appl. Mech. 61 (1994) 264-269.
    • (1994) ASME J. Appl. Mech. , vol.61 , pp. 264-269
    • Nagarajan, A.1    Lutz, E.D.2    Mukherjee, S.3
  • 3
    • 0001752979 scopus 로고    scopus 로고
    • The boundary contour method for three-dimensional linear elasticity
    • [3] A. Nagarajan, E.D. Lutz and S. Mukherjee, The boundary contour method for three-dimensional linear elasticity, ASME J. Appl. Mech. 63 (1996) 278-286.
    • (1996) ASME J. Appl. Mech. , vol.63 , pp. 278-286
    • Nagarajan, A.1    Lutz, E.D.2    Mukherjee, S.3
  • 5
    • 0001600671 scopus 로고    scopus 로고
    • The boundary contour method for two-dimensional linear elasticity with quadratic boundary elements
    • [5] A.V. Phan, S. Mukherjee and J.R.R. Mayer, The boundary contour method for two-dimensional linear elasticity with quadratic boundary elements, Comput. Mech. 20 (1997) 310-319.
    • (1997) Comput. Mech. , vol.20 , pp. 310-319
    • Phan, A.V.1    Mukherjee, S.2    Mayer, J.R.R.3
  • 6
    • 0031175457 scopus 로고    scopus 로고
    • The boundary contour method for three-dimensional linear elasticity with a new quadratic boundary element
    • [6] Y.X. Mukherjee, S. Mukherjee, X. Shi and A. Nagarajati, The boundary contour method for three-dimensional linear elasticity with a new quadratic boundary element, Engrg. Anal. Boundary Elem. 20 (1997) 35-44.
    • (1997) Engrg. Anal. Boundary Elem. , vol.20 , pp. 35-44
    • Mukherjee, Y.X.1    Mukherjee, S.2    Shi, X.3    Nagarajati, A.4
  • 7
    • 0032083903 scopus 로고    scopus 로고
    • A boundary contour formulation for design sensitivity analysis in two-dimensional linear elasticity
    • [7] A.V. Phan, S. Mukherjee and J.R.R. Mayer, A boundary contour formulation for design sensitivity analysis in two-dimensional linear elasticity, Int. J. Solids Struct. 35 (1998) 1981-1999.
    • (1998) Int. J. Solids Struct. , vol.35 , pp. 1981-1999
    • Phan, A.V.1    Mukherjee, S.2    Mayer, J.R.R.3
  • 8
    • 0031619329 scopus 로고    scopus 로고
    • The hypersingular boundary contour method for two-dimensional linear elasticity
    • [8] A.V. Phan, S. Mukherjee and J.R.R. Mayer, The hypersingular boundary contour method for two-dimensional linear elasticity, Acta Mechanica 130 (1998) 209-225.
    • (1998) Acta Mechanica , vol.130 , pp. 209-225
    • Phan, A.V.1    Mukherjee, S.2    Mayer, J.R.R.3
  • 9
    • 0001200340 scopus 로고    scopus 로고
    • The hypersingular boundary contour method for three dimensional linear elasticity
    • [9] S. Mukherjee and Y.X. Mukherjee, The hypersingular boundary contour method for three dimensional linear elasticity, ASME J. Appl. Mech. 65 (1998) 300-309.
    • (1998) ASME J. Appl. Mech. , vol.65 , pp. 300-309
    • Mukherjee, S.1    Mukherjee, Y.X.2
  • 11
    • 0001851864 scopus 로고
    • An integral equation approach to boundary value problems of classical elastostatics
    • [11] F.J. Rizzo, An integral equation approach to boundary value problems of classical elastostatics, Qtly. Appl. Math. 25 (1967) 83-95.
    • (1967) Qtly. Appl. Math. , vol.25 , pp. 83-95
    • Rizzo, F.J.1
  • 12
    • 0029212917 scopus 로고
    • Computation of energy release rate using material differentiation of elastic BIE for 3-D elastic fracture
    • [12] M. Bonnet and H. Xiao, Computation of energy release rate using material differentiation of elastic BIE for 3-D elastic fracture, Engrg. Anal. Boundary Elem. 15 (1995) 137-149.
    • (1995) Engrg. Anal. Boundary Elem. , vol.15 , pp. 137-149
    • Bonnet, M.1    Xiao, H.2
  • 13
    • 0000456005 scopus 로고
    • Time derivatives of integrals and functionals defined on varying volume and surface elements
    • [13] H. Petryk and Z. Mróz, Time derivatives of integrals and functionals defined on varying volume and surface elements, Arch. Mech. 5-6 (1986) 697-724.
    • (1986) Arch. Mech. , vol.5-6 , pp. 697-724
    • Petryk, H.1    Mróz, Z.2
  • 14
    • 0028494767 scopus 로고
    • Hypersingular and finite part integrals in the boundary element method
    • [14] K.-C. Toh and S. Mukherjee, Hypersingular and finite part integrals in the boundary element method, Int. J. Solids Struct. 31 (1994) 2299-2312.
    • (1994) Int. J. Solids Struct. , vol.31 , pp. 2299-2312
    • Toh, K.-C.1    Mukherjee, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.