-
2
-
-
0000827282
-
Robust multivariable scattering Hurwitz interval polynomial
-
Bose, N.K. (1988). Robust multivariable scattering Hurwitz interval polynomial. Linear Algebra and Its Applications, 98:123-136.
-
(1988)
Linear Algebra and Its Applications
, vol.98
, pp. 123-136
-
-
Bose, N.K.1
-
3
-
-
0024739590
-
On the Multidimensional Generalization of Robustness of Scattering Hurwitz Property of Complex Polynomials
-
Basu, S. (1989). On the Multidimensional Generalization of Robustness of Scattering Hurwitz Property of Complex Polynomials. IEEE Trans. on Circuits and Systems, 36:1159-1167.
-
(1989)
IEEE Trans. on Circuits and Systems
, vol.36
, pp. 1159-1167
-
-
Basu, S.1
-
4
-
-
0027577935
-
Computation of stability radius for families of bivariate polynomials
-
Kogan, J. (1993). Computation of stability radius for families of bivariate polynomials. Multidimensional Systems and Signal Processing, 4:151-165.
-
(1993)
Multidimensional Systems and Signal Processing
, vol.4
, pp. 151-165
-
-
Kogan, J.1
-
6
-
-
0030129717
-
Edge property from end-points for scattering Hurwitz polynomials
-
Bose, N.K. (1996). Edge property from end-points for scattering Hurwitz polynomials. Automatica, 32:655-657.
-
(1996)
Automatica
, vol.32
, pp. 655-657
-
-
Bose, N.K.1
-
7
-
-
0025418234
-
On boundary implications of stability and positivity properties of multidimensional systems
-
Basu, S. (1990). On boundary implications of stability and positivity properties of multidimensional systems. Proceedings of IEEE, 78:614-626.
-
(1990)
Proceedings of IEEE
, vol.78
, pp. 614-626
-
-
Basu, S.1
-
8
-
-
0026926379
-
An extreme point result for robust stability of a diamond of polynomials
-
Barmish, B.R., Tempo, R., Hollot, C.V. and Kang, H.I. (1992). An extreme point result for robust stability of a diamond of polynomials. IEEE Trans, on Automatic Control, AC-37:1460-1462.
-
(1992)
IEEE Trans, on Automatic Control
, vol.AC-37
, pp. 1460-1462
-
-
Barmish, B.R.1
Tempo, R.2
Hollot, C.V.3
Kang, H.I.4
-
9
-
-
0023859609
-
Root locations of an entire polytope of polynomials: It suffices to check the edges
-
Bartlett, A.C., Hollot, C.V. and Huang, L. (1988). Root locations of an entire polytope of polynomials: It suffices to check the edges. Mathematics of Control, Signals and Systems, 1:61-71.
-
(1988)
Mathematics of Control, Signals and Systems
, vol.1
, pp. 61-71
-
-
Bartlett, A.C.1
Hollot, C.V.2
Huang, L.3
-
10
-
-
0026679938
-
Stability conditions for polytopes of polynomials
-
Rantzer, A. (1992). Stability conditions for polytopes of polynomials. IEEE Trans, on Automatic Control, AC-37:79-89.
-
(1992)
IEEE Trans, on Automatic Control
, vol.AC-37
, pp. 79-89
-
-
Rantzer, A.1
-
11
-
-
0001725231
-
Asymptotic stability of an equilibrium position of a family of systems of linear differential equations
-
Kharitonov, V.L. (1978). Asymptotic stability of an equilibrium position of a family of systems of linear differential equations. Differentsial'nye Uravneniya, 14:2086-2088.
-
(1978)
Differentsial'nye Uravneniya
, vol.14
, pp. 2086-2088
-
-
Kharitonov, V.L.1
-
12
-
-
0025383901
-
A dual result to Kharitonov's theorem
-
Tempo, R. (1990). A dual result to Kharitonov's theorem. IEEE Trans, on Automatic Control, AC-35:195-198.
-
(1990)
IEEE Trans, on Automatic Control
, vol.AC-35
, pp. 195-198
-
-
Tempo, R.1
|