-
1
-
-
0040260398
-
Essentially symplectic boundary value methods for linear Hamiltonian systems
-
Brugnano L. Essentially symplectic boundary value methods for linear Hamiltonian systems. J. Comput. Math. 19:1997;233-254.
-
(1997)
J. Comput. Math.
, vol.19
, pp. 233-254
-
-
Brugnano, L.1
-
2
-
-
0040802660
-
Is symplecticness sufficient for approximating Hamiltonian systems?
-
L. Brugnano, Is symplecticness sufficient for approximating Hamiltonian systems? Non-linear Differential Equations Appl. 3, 1-2 (1997) 39-48.
-
(1997)
Non-linear Differential Equations Appl.
, vol.3
, Issue.1-2
, pp. 39-48
-
-
Brugnano, L.1
-
3
-
-
0039076592
-
Block boundary value methods for linear Hamiltonian systems
-
Brugnano L., Trigiante D. Block boundary value methods for linear Hamiltonian systems. Appl. Math. Comput. 81:1997;49-68.
-
(1997)
Appl. Math. Comput.
, vol.81
, pp. 49-68
-
-
Brugnano, L.1
Trigiante, D.2
-
5
-
-
0032372573
-
Error growth in the numerical integration of periodic orbits by multistep methods, with application to reversible systems
-
Cano B., Sanz-Serna J.M. Error growth in the numerical integration of periodic orbits by multistep methods, with application to reversible systems. IMA J. Numer. Anal. 18:1998;57-75.
-
(1998)
IMA J. Numer. Anal.
, vol.18
, pp. 57-75
-
-
Cano, B.1
Sanz-Serna, J.M.2
-
6
-
-
11044230975
-
A special stability problem for linear multistep methods
-
Dahlquist G. A special stability problem for linear multistep methods. BIT. 3:1963;27-43.
-
(1963)
BIT
, vol.3
, pp. 27-43
-
-
Dahlquist, G.1
-
7
-
-
0001580611
-
Conservation of integrals and symplectic structure in the integration of differential equations by multistep methods
-
Eirola T., Sanz-Serna J.M. Conservation of integrals and symplectic structure in the integration of differential equations by multistep methods. Numer. Math. 61:1992;281-290.
-
(1992)
Numer. Math.
, vol.61
, pp. 281-290
-
-
Eirola, T.1
Sanz-Serna, J.M.2
-
8
-
-
0001127934
-
Numerical integrators that preserve symmetries and reversing symmetries
-
McLachlan R.I., Quispel G.R., Turner G.S. Numerical integrators that preserve symmetries and reversing symmetries. SIAM J. Numer. Anal. 35(2):1998;586-599.
-
(1998)
SIAM J. Numer. Anal.
, vol.35
, Issue.2
, pp. 586-599
-
-
McLachlan, R.I.1
Quispel, G.R.2
Turner, G.S.3
-
11
-
-
0038041190
-
The Canonicity of mappings generated by Runge-Kutta type methods when integrating the systems ẍ=-∂ U / ∂ x
-
Suris Yu.B. The Canonicity of mappings generated by Runge-Kutta type methods when integrating the systems. ẍ=-∂ U / ∂ x U.S.S.R. Comput. Maths. Math. Phys. 29(1):1989;138-144.
-
(1989)
U.S.S.R. Comput. Maths. Math. Phys.
, vol.29
, Issue.1
, pp. 138-144
-
-
Suris, Yu.b.1
-
12
-
-
0041819204
-
Multipoint methods for linear Hamiltonian systems
-
Gordon and Breach, Reading, UK
-
D. Trigiante, Multipoint methods for linear Hamiltonian systems, in: Advances in Nonlinear Dynamics, series "Stability and Control: Theory Methods and Applications", Gordon and Breach, Reading, UK, 1997, pp. 335-348.
-
(1997)
In: Advances in Nonlinear Dynamics, Series "stability and Control: Theory Methods and Applications"
, pp. 335-348
-
-
Trigiante, D.1
|