-
1
-
-
0000352080
-
Recent developments in structural sensitivity analysis
-
R. T. Haftka and H. M. Adelman, 'Recent developments in structural sensitivity analysis', Struct. Optim., 1, 137-151 (1989).
-
(1989)
Struct. Optim.
, vol.1
, pp. 137-151
-
-
Haftka, R.T.1
Adelman, H.M.2
-
2
-
-
0000152623
-
Efficient computation of eigenvector sensitivities in structural dynamics
-
K. F. Alvin, 'Efficient computation of eigenvector sensitivities in structural dynamics', AIAA J., 35, 1760-1766 (1997).
-
(1997)
AIAA J.
, vol.35
, pp. 1760-1766
-
-
Alvin, K.F.1
-
3
-
-
0027683685
-
Model updating in structural dynamics: A survey
-
J. E. Mottershead and M. I. Friswell, 'Model updating in structural dynamics: a survey', J. Sound Vib., 167, 347-375 (1993).
-
(1993)
J. Sound Vib.
, vol.167
, pp. 347-375
-
-
Mottershead, J.E.1
Friswell, M.I.2
-
4
-
-
0025889434
-
Second-order design sensitivities to assess the applicability of sensitivity analysis
-
J. A. Brandon, 'Second-order design sensitivities to assess the applicability of sensitivity analysis', AIAA J., 29, 135-139(1991).
-
(1991)
AIAA J.
, vol.29
, pp. 135-139
-
-
Brandon, J.A.1
-
5
-
-
0016521202
-
Numerical methods for evaluating the derivatives of eigenvalues and eigenvectors
-
C. S. Rudisill and Y. Y. Chu, 'Numerical methods for evaluating the derivatives of eigenvalues and eigenvectors', AIAA J., 13, 834-837 (1975).
-
(1975)
AIAA J.
, vol.13
, pp. 834-837
-
-
Rudisill, C.S.1
Chu, Y.Y.2
-
6
-
-
0029344817
-
Calculation of second and higher order eigenvector derivatives
-
M. I. Friswell, 'Calculation of second and higher order eigenvector derivatives', J. Guid. Control Dyn., 18, 919-921 (1995).
-
(1995)
J. Guid. Control Dyn.
, vol.18
, pp. 919-921
-
-
Friswell, M.I.1
-
7
-
-
21344486221
-
Derivatives of eigenvalues and eigenvectors of matrix functions
-
A. L. Andrew, K. W. E. Chu and P. Lancaster, 'Derivatives of eigenvalues and eigenvectors of matrix functions', SIAM J. Matrix Anal. Appl., 14, 903-926 (1993).
-
(1993)
SIAM J. Matrix Anal. Appl.
, vol.14
, pp. 903-926
-
-
Andrew, A.L.1
Chu, K.W.E.2
Lancaster, P.3
-
8
-
-
0009194507
-
Computation of derivatives of repeated eigenvalues and corresponding eigenvectors by simultaneous iteration
-
A. L. Andrew and R. C. E. Tan, 'Computation of derivatives of repeated eigenvalues and corresponding eigenvectors by simultaneous iteration', AIAA J., 34, 2214-2216 (1996).
-
(1996)
AIAA J.
, vol.34
, pp. 2214-2216
-
-
Andrew, A.L.1
Tan, R.C.E.2
-
9
-
-
0030079574
-
Iterative least-squares calculation for model eigenvector sensitivity
-
J.-G. Béliveau, S. Cogan, G. Lallement and F. Ayer, 'Iterative least-squares calculation for model eigenvector sensitivity', AIAA J., 34, 385-391 (1996).
-
(1996)
AIAA J.
, vol.34
, pp. 385-391
-
-
Béliveau, J.-G.1
Cogan, S.2
Lallement, G.3
Ayer, F.4
-
10
-
-
0009189841
-
Computing derivatives of eigenvalues and eigenvectors by simultaneous iteration
-
R. C. E. Tan and A. L. Andrew, 'Computing derivatives of eigenvalues and eigenvectors by simultaneous iteration', IMA J. Numer. Anal., 9, 111-122 (1989).
-
(1989)
IMA J. Numer. Anal.
, vol.9
, pp. 111-122
-
-
Tan, R.C.E.1
Andrew, A.L.2
-
11
-
-
0026907814
-
Accelerated subspace iteration for eigenvector derivatives
-
T. Ting, 'Accelerated subspace iteration for eigenvector derivatives', AIAA J., 30, 2114-2118 (1992).
-
(1992)
AIAA J.
, vol.30
, pp. 2114-2118
-
-
Ting, T.1
-
12
-
-
0001742772
-
Accelerated iterative procedure for calculating eigenvector derivatives
-
O. Zhang and A. Zerva, 'Accelerated iterative procedure for calculating eigenvector derivatives', AIAA J., 35, 340-348 (1997).
-
(1997)
AIAA J.
, vol.35
, pp. 340-348
-
-
Zhang, O.1
Zerva, A.2
-
13
-
-
0043196177
-
Iterative methods for computation of derivatives of eigenvalues and eigenvectors
-
E.O. Tuck and J.A.K. Stott (eds.)
-
A. L. Andrew, 'Iterative methods for computation of derivatives of eigenvalues and eigenvectors' in E.O. Tuck and J.A.K. Stott (eds.), Proc. Third Internat. Engineering Math. Appl. Con/., I. E. Aust., Adelaide, 1998, pp. 83-86.
-
(1998)
Proc. Third Internat. Engineering Math. Appl. Con/., I. E. Aust., Adelaide
, pp. 83-86
-
-
Andrew, A.L.1
-
14
-
-
0028256744
-
Iterative computation of second-order derivatives of eigenvalues and eigenvectors
-
R. C. E. Tan, A. L. Andrew and F. M. L. Hong, 'Iterative computation of second-order derivatives of eigenvalues and eigenvectors', Commun. Numer. Methods Eng., 10, 1-9 (1994).
-
(1994)
Commun. Numer. Methods Eng.
, vol.10
, pp. 1-9
-
-
Tan, R.C.E.1
Andrew, A.L.2
Hong, F.M.L.3
-
15
-
-
0043096012
-
Convergence of an iterative method for derivatives of eigensystems
-
A. L. Andrew, 'Convergence of an iterative method for derivatives of eigensystems', J. Comput. Phys., 26, 107-112(1978).
-
(1978)
J. Comput. Phys.
, vol.26
, pp. 107-112
-
-
Andrew, A.L.1
-
16
-
-
3042985041
-
Iterative computation of derivatives of repeated eigenvalues and the corresponding eigenvectors
-
La Trobe University, Melbourne
-
A. L. Andrew and R. C. E. Tan, 'Iterative computation of derivatives of repeated eigenvalues and the corresponding eigenvectors', Math. Research Paper 99-2, La Trobe University, Melbourne, 1999.
-
(1999)
Math. Research Paper
, vol.99
, Issue.2
-
-
Andrew, A.L.1
Tan, R.C.E.2
-
17
-
-
0042208962
-
Finite and continuous perturbations of matrix eigenvalues
-
A. L. Andrew, 'Finite and continuous perturbations of matrix eigenvalues', Appl. Math. Lett., 11(1), 47-51 (1998).
-
(1998)
Appl. Math. Lett.
, vol.11
, Issue.1
, pp. 47-51
-
-
Andrew, A.L.1
-
18
-
-
0009120572
-
Iterative computation of derivatives of eigenvalues and eigenvectors
-
A. L. Andrew, 'Iterative computation of derivatives of eigenvalues and eigenvectors', J. Inst. Math. Appl., 24, 209-218 (1979).
-
(1979)
J. Inst. Math. Appl.
, vol.24
, pp. 209-218
-
-
Andrew, A.L.1
-
19
-
-
0032217343
-
Computation of derivatives of repeated eigenvalues and the corresponding eigenvectors of symmetric matrix pencils
-
A. L. Andrew and R. C. E. Tan, 'Computation of derivatives of repeated eigenvalues and the corresponding eigenvectors of symmetric matrix pencils', SIAM J. Matrix Anal. Appl., 20, 78-100 (1998).
-
(1998)
SIAM J. Matrix Anal. Appl.
, vol.20
, pp. 78-100
-
-
Andrew, A.L.1
Tan, R.C.E.2
-
20
-
-
0043196175
-
-
Academic Press, New York
-
P. Lancaster and M. Tismenetsky, The Theory of Matrices, 2 Ed., Academic Press, New York, 1985, p. 405.
-
(1985)
The Theory of Matrices, 2 Ed.
, pp. 405
-
-
Lancaster, P.1
Tismenetsky, M.2
-
21
-
-
0028728364
-
Efficient small-scale circuit analysis and sensitivity computations with the PVL algorithm
-
IEEE Computer Society Press, Los Alamitos, CA
-
R. W. Freund and P. Feldmann, 'Efficient small-scale circuit analysis and sensitivity computations with the PVL algorithm', Technical Digest of the 1994 IEEE/ACM International Conference on Computer-Aided Design, IEEE Computer Society Press, Los Alamitos, CA, 1994.
-
(1994)
Technical Digest of the 1994 IEEE/ACM International Conference on Computer-Aided Design
-
-
Freund, R.W.1
Feldmann, P.2
-
23
-
-
38249033328
-
Computing derivatives of eigensystems by the topological ε-algorithm
-
R. C. E. Tan, 'Computing derivatives of eigensystems by the topological ε-algorithm', Appl. Numer. Math., 3, 539-550 (1987).
-
(1987)
Appl. Numer. Math.
, vol.3
, pp. 539-550
-
-
Tan, R.C.E.1
-
24
-
-
0024699954
-
Some acceleration methods for iterative computation of derivatives of eigenvalues and eigenvectors
-
R. C. E. Tan, 'Some acceleration methods for iterative computation of derivatives of eigenvalues and eigenvectors', Int. J. Numer. Methods Eng., 28, 1505-1519 (1989).
-
(1989)
Int. J. Numer. Methods Eng.
, vol.28
, pp. 1505-1519
-
-
Tan, R.C.E.1
-
25
-
-
0042695082
-
Henrici's transformation and its application to the computation of derivatives of eigensystems
-
R. C. E. Tan and A. L. Andrew, 'Henrici's transformation and its application to the computation of derivatives of eigensystems', J. Comput. Appl. Math., 59, 1-8 (1995).
-
(1995)
J. Comput. Appl. Math.
, vol.59
, pp. 1-8
-
-
Tan, R.C.E.1
Andrew, A.L.2
-
26
-
-
0031346306
-
Algorithm 775: SRRIT - A FORTRAN subroutine to calculate the dominant invariant subspace of a nonsymmetric matrix
-
Z. Bai and G. W. Stewart, 'Algorithm 775: SRRIT - a FORTRAN subroutine to calculate the dominant invariant subspace of a nonsymmetric matrix', ACM Trans. Math. Softw., 23, 494-513 (1997).
-
(1997)
ACM Trans. Math. Softw.
, vol.23
, pp. 494-513
-
-
Bai, Z.1
Stewart, G.W.2
|