메뉴 건너뛰기




Volumn 50, Issue 1, 1999, Pages 85-94

A hybrid model based on dynamic programming, neural networks, and surrogate value for inventory optimisation applications

Author keywords

Data mining; Dynamic programming; Inventory optimisation; Neural networks

Indexed keywords

DATA MINING; DATA REDUCTION; DYNAMIC PROGRAMMING; NEURAL NETWORKS; REGRESSION ANALYSIS;

EID: 0032636098     PISSN: 01605682     EISSN: 14769360     Source Type: Journal    
DOI: 10.1057/palgrave.jors.2600658     Document Type: Article
Times cited : (10)

References (32)
  • 1
    • 0031186872 scopus 로고    scopus 로고
    • Selecting the best periodic inventory control and demand forecasting methods for low demand items
    • Sani B and Kingsman BG (1997). Selecting the best periodic inventory control and demand forecasting methods for low demand items. J Opl Res Soc 48: 700-713.
    • (1997) J Opl Res Soc , vol.48 , pp. 700-713
    • Sani, B.1    Kingsman, B.G.2
  • 2
    • 0001962762 scopus 로고
    • Dynamic version of the economic lot size model
    • Wagner HM and Whitin TM (1958). Dynamic version of the economic lot size model. Mgmt Sci 5: 89-96.
    • (1958) Mgmt Sci , vol.5 , pp. 89-96
    • Wagner, H.M.1    Whitin, T.M.2
  • 5
    • 0030244375 scopus 로고    scopus 로고
    • Estimating negative binomial demand for retail inventory management with unobservable lost sales
    • Agrawal N and Smith SA (1996). Estimating negative binomial demand for retail inventory management with unobservable lost sales. Naval Res Logist 43: 839-861.
    • (1996) Naval Res Logist , vol.43 , pp. 839-861
    • Agrawal, N.1    Smith, S.A.2
  • 6
    • 84989726677 scopus 로고
    • Demand estimation in lost sales inventory systems
    • Nahmias S (1994). Demand estimation in lost sales inventory systems. Naval Res Logist 41: 739-757.
    • (1994) Naval Res Logist , vol.41 , pp. 739-757
    • Nahmias, S.1
  • 7
    • 0001693611 scopus 로고
    • Optimizing inventory levels in a two echelon retailer system with partial lost sales
    • Nahmias S and Smith SA (1994). Optimizing inventory levels in a two echelon retailer system with partial lost sales. Mgmt Sci 40: 582-596.
    • (1994) Mgmt Sci , vol.40 , pp. 582-596
    • Nahmias, S.1    Smith, S.A.2
  • 8
    • 0011560556 scopus 로고
    • Predicting demand from sales data in the presence of stockouts
    • Wecker WE (1978). Predicting demand from sales data in the presence of stockouts. Mgmt Sci 24: 1043-1054.
    • (1978) Mgmt Sci , vol.24 , pp. 1043-1054
    • Wecker, W.E.1
  • 9
    • 0022045727 scopus 로고
    • Fill-rate optimization in a one-warehouse N-identical retailer distribution system
    • Schwarz LB, Deuermayer BL and Badinelli RD (1985). Fill-rate optimization in a one-warehouse N-identical retailer distribution system. Mgmt Sci 31: 488-498.
    • (1985) Mgmt Sci , vol.31 , pp. 488-498
    • Schwarz, L.B.1    Deuermayer, B.L.2    Badinelli, R.D.3
  • 10
    • 20144379695 scopus 로고    scopus 로고
    • Perfect Service—Every Time
    • Saipe A (1997). Perfect Service—Every Time. Logist Q 3: 4-5.
    • (1997) Logist Q , vol.3 , pp. 4-5
    • Saipe, A.1
  • 12
    • 22044448668 scopus 로고    scopus 로고
    • Neural Networks Based Forecasting Techniques for Inventory Control Applications
    • Bansal K, Vadhavkar S and Gupta A (1998). Neural Networks Based Forecasting Techniques for Inventory Control Applications. Data Mining and Knowledge Discovery 2: 97-102.
    • (1998) Data Mining and Knowledge Discovery , vol.2 , pp. 97-102
    • Bansal, K.1    Vadhavkar, S.2    Gupta, A.3
  • 16
    • 0030522668 scopus 로고    scopus 로고
    • Financial prediction: Some pointers, pitfalls and common errors
    • Swingler K (1996). Financial prediction: Some pointers, pitfalls and common errors. Neural Comput Applic 4: 192-197.
    • (1996) Neural Comput Applic , vol.4 , pp. 192-197
    • Swingler, K.1
  • 23
    • 84984725052 scopus 로고
    • Forecasting probabilities with neural networks
    • M Casdagli and S Eubank, Addison- Wesley: Redwood City, USA
    • Bergman A, Grassberger P and TP Meyer (1992). Forecasting probabilities with neural networks. In: M Casdagli and S Eubank (eds). Nonlinear Modeling and Forecasting. Addison- Wesley: Redwood City, USA, pp 305-315.
    • (1992) Nonlinear Modeling and Forecasting , pp. 305-315
    • Bergman, A.1    Grassberger, P.2    Meyer, T.P.3
  • 25
    • 0028698662 scopus 로고
    • Bayesian non-linear modelling for the prediction competition
    • Mackay DJC (1994). Bayesian non-linear modelling for the prediction competition. ASHRAE Trans V 100, Pt. 2. 1053-1062.
    • (1994) ASHRAE Trans V 100, Pt , vol.2 , pp. 1053-1062
    • Mackay, D.1
  • 29
    • 0010643338 scopus 로고
    • A.I. memo no. 1447 c.b.c.l memo no. 101, August, M.I.T. Artificial Intelligence Laboratory and Center for Biological Computational Learning
    • Miyano T and Girosi F (1994). Forecasting global temperature variations by neural networks. A.I. memo no. 1447 c.b.c.l memo no. 101, August, M.I.T. Artificial Intelligence Laboratory and Center for Biological Computational Learning.
    • (1994) Forecasting Global Temperature Variations by Neural Networks
    • Miyano, T.1    Girosi, F.2
  • 30
  • 32
    • 0002704818 scopus 로고
    • A practical Bayesian framework for backpropagation networks
    • Mackay DJC (1992). A practical Bayesian framework for backpropagation networks. Neural Comput 4: 448-472.
    • (1992) Neural Comput , vol.4 , pp. 448-472
    • Mackay, D.J.C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.