메뉴 건너뛰기




Volumn 211, Issue 1, 1999, Pages 298-342

TKK algebras and vertex operator representations

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0032623045     PISSN: 00218693     EISSN: None     Source Type: Journal    
DOI: 10.1006/jabr.1998.7604     Document Type: Article
Times cited : (25)

References (20)
  • 3
    • 0030500924 scopus 로고    scopus 로고
    • Central quotients and coverings of Steinberg unitary Lie algebras
    • Allison B., Gao Y. Central quotients and coverings of Steinberg unitary Lie algebras. Canad. J. Math. 48:1996;449-482.
    • (1996) Canad. J. Math. , vol.48 , pp. 449-482
    • Allison, B.1    Gao, Y.2
  • 4
    • 0030078515 scopus 로고    scopus 로고
    • Quantum tori and the structure of elliptic quasi-simple Lie algebras
    • Berman S., Gao Y., Krylyuk Y. Quantum tori and the structure of elliptic quasi-simple Lie algebras. J. Funct. Anal. 135:1996;339-386.
    • (1996) J. Funct. Anal. , vol.135 , pp. 339-386
    • Berman, S.1    Gao, Y.2    Krylyuk, Y.3
  • 7
    • 0002586893 scopus 로고
    • Derivations and central extensions of finitely generated graded Lie algebras
    • Farnsteiner R. Derivations and central extensions of finitely generated graded Lie algebras. J. Algebra. 118:1988;33-45.
    • (1988) J. Algebra , vol.118 , pp. 33-45
    • Farnsteiner, R.1
  • 8
    • 0000814037 scopus 로고
    • Representations of Kac-Moody algebras and dual resonance models
    • Frenkel I. B. Representations of Kac-Moody algebras and dual resonance models. Lectures in Appl. Math. 21:1985;325-353.
    • (1985) Lectures in Appl. Math. , vol.21 , pp. 325-353
    • Frenkel I., B.1
  • 9
    • 0000218323 scopus 로고
    • Two constructions of affine Lie algebra representations and boson-fermion correspondence in quantum field theory
    • Frenkel I. B. Two constructions of affine Lie algebra representations and boson-fermion correspondence in quantum field theory. J. Funct. Anal. 44:1981;259-327.
    • (1981) J. Funct. Anal. , vol.44 , pp. 259-327
    • Frenkel I., B.1
  • 10
    • 0002630015 scopus 로고
    • Basic representations of affine Lie algebras and dual resonance models
    • Frenkel I. B., Kac V. G. Basic representations of affine Lie algebras and dual resonance models. Invent. Math. 62:1980;23-66.
    • (1980) Invent. Math. , vol.62 , pp. 23-66
    • Frenkel I., B.1    Kac V., G.2
  • 12
    • 51649165932 scopus 로고
    • The arithmetic theory of loop groups
    • Garland H. The arithmetic theory of loop groups. Publ. Math. IHES. 52:1980;5-136.
    • (1980) Publ. Math. IHES , vol.52 , pp. 5-136
    • Garland, H.1
  • 13
    • 0002820929 scopus 로고
    • Structure and Representations of Jordan Algebras
    • Providence: Am. Math. Soc.
    • Jacobson N. Structure and Representations of Jordan Algebras. Amer. Math. Soc. Colloq. Publ. 39:1968;Am. Math. Soc. Providence.
    • (1968) Amer. Math. Soc. Colloq. Publ. , vol.39
    • Jacobson, N.1
  • 16
    • 0000697039 scopus 로고
    • Standard modules for type one affine Lie algebras
    • Berlin/ New York: Springer-Verlag. p. 194-251
    • Lepowsky J., Primc M. Standard modules for type one affine Lie algebras. Lecture Notes in Mathematics. 1982;Springer-Verlag, Berlin/ New York. p. 194-251.
    • (1982) Lecture Notes in Mathematics
    • Lepowsky, J.1    Primc, M.2
  • 17
    • 0000015204 scopus 로고
    • A new family of algebras underlying the Rogers-Ramanujan identities and generalizations
    • Lepowsky J., Wilson R. L. A new family of algebras underlying the Rogers-Ramanujan identities and generalizations. Proc. Nat. Acad. Sci. U.S.A. 78:1981;7254-7258.
    • (1981) Proc. Nat. Acad. Sci. U.S.A. , vol.78 , pp. 7254-7258
    • Lepowsky, J.1    Wilson R., L.2
  • 19
    • 0001473466 scopus 로고
    • Toroidal Lie algebras and vertex representations
    • Moody R. V., Rao S. Eswara, Yokonuma T. Toroidal Lie algebras and vertex representations. Geom. Dedicata. 35:1990;283-307.
    • (1990) Geom. Dedicata , vol.35 , pp. 283-307
    • Moody R., V.1    Rao S. Eswara2    Yokonuma, T.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.