-
1
-
-
0001254835
-
Weighted empirical and quantile processes
-
Csörgö, M., Csörgö, S., Horvath, L., Mason, D., 1986. Weighted empirical and quantile processes. Ann. Probab. 14, 31-85.
-
(1986)
Ann. Probab.
, vol.14
, pp. 31-85
-
-
Csörgö, M.1
Csörgö, S.2
Horvath, L.3
Mason, D.4
-
2
-
-
0009148541
-
Normal and stable convergence of integral functions of the empirical distribution function
-
Csörgö, M., Csörgö, S., Horvath, L., Mason, D., 1986a. Normal and stable convergence of integral functions of the empirical distribution function. Ann. Probab. 14, 86-118.
-
(1986)
Ann. Probab.
, vol.14
, pp. 86-118
-
-
Csörgö, M.1
Csörgö, S.2
Horvath, L.3
Mason, D.4
-
4
-
-
0002071162
-
What portion of the sample makes a partial sum asymptotically stable or normal?
-
Csörgö, S., Horvath, L., Mason, D., 1986. What portion of the sample makes a partial sum asymptotically stable or normal? Probab. Theory Rel. Fields 72, 1-16.
-
(1986)
Probab. Theory Rel. Fields
, vol.72
, pp. 1-16
-
-
Csörgö, S.1
Horvath, L.2
Mason, D.3
-
5
-
-
0009285128
-
On smooth statistical tail functionals
-
to appear
-
Drees, H., 1997. On smooth statistical tail functionals. Scand. J. Statist., to appear.
-
(1997)
Scand. J. Statist.
-
-
Drees, H.1
-
6
-
-
0009150735
-
-
Technical Report. Tinbergen Institute, Erasmus University Rotterdam
-
Gielens, G., Straetmans, S., de Vries, C.G., 1996. Fat Tail Distributions and Local Thin Tail Alternatives. Technical Report. Tinbergen Institute, Erasmus University Rotterdam.
-
(1996)
Fat Tail Distributions and Local Thin Tail Alternatives
-
-
Gielens, G.1
Straetmans, S.2
De Vries, C.G.3
-
7
-
-
0000085945
-
Slow convergence to normality: An edgeworth expansion without third moment
-
de Haan, L. Peng, L., 1996. Slow convergence to normality: An edgeworth expansion without third moment. Probab. Math. Statist. 17, 395-406.
-
(1996)
Probab. Math. Statist.
, vol.17
, pp. 395-406
-
-
De Haan, L.1
Peng, L.2
-
8
-
-
0000476661
-
Estimating the limit distribution of multivariate extremes
-
de Haan, L., Resnick, S., 1993. Estimating the limit distribution of multivariate extremes. Comm. Statist. Stochastic Models 9, 275-309.
-
(1993)
Comm. Statist. Stochastic Models
, vol.9
, pp. 275-309
-
-
De Haan, L.1
Resnick, S.2
-
9
-
-
0030485816
-
Second order regular variation and rates of convergence in extreme value theory
-
de Haan, L., Resnick, S., 1996. Second order regular variation and rates of convergence in extreme value theory. Ann. Probab. 24, 97-124.
-
(1996)
Ann. Probab.
, vol.24
, pp. 97-124
-
-
De Haan, L.1
Resnick, S.2
-
11
-
-
0000562341
-
On joint estimation of an exponent of regular variation and an asymmetry parameter for tail distributions
-
Hahn, M.G., Mason, D.M., Weiner, D.C., (Eds.), Birkhäuser, Boston
-
Hahn, M.G., Weiner, D.C., 1991. On joint estimation of an exponent of regular variation and an asymmetry parameter for tail distributions. In: Hahn, M.G., Mason, D.M., Weiner, D.C., (Eds.), Sums, Trimmed Sums and Extremes. Birkhäuser, Boston.
-
(1991)
Sums, Trimmed Sums and Extremes
-
-
Hahn, M.G.1
Weiner, D.C.2
-
12
-
-
0002407801
-
On some simple estimates of an exponent of regular variation
-
Hall, P., 1982. On some simple estimates of an exponent of regular variation. J. R. Statist. Soc. B 44, 37-42.
-
(1982)
J. R. Statist. Soc. B
, vol.44
, pp. 37-42
-
-
Hall, P.1
-
13
-
-
0001263124
-
A simple general approach to inference about the tail of a distribution
-
Hill, B.M., 1975. A simple general approach to inference about the tail of a distribution. Ann. Statist. 3, 1163-1174.
-
(1975)
Ann. Statist.
, vol.3
, pp. 1163-1174
-
-
Hill, B.M.1
-
14
-
-
0000782528
-
Laws of large numbers for sums of extreme values
-
Mason, D., 1982. Laws of large numbers for sums of extreme values. Ann. Probab. 10, 754-764.
-
(1982)
Ann. Probab.
, vol.10
, pp. 754-764
-
-
Mason, D.1
-
15
-
-
0031512270
-
Heavy tail modelling and teletraffic data
-
Resnick, S., 1997. Heavy tail modelling and teletraffic data. Ann. Statist. 25, 1805-1848.
-
(1997)
Ann. Statist.
, vol.25
, pp. 1805-1848
-
-
Resnick, S.1
|