-
1
-
-
0026188767
-
The use of noise properties in set theoretic estimation
-
P. L. Combettes and H. J. Trussell, “The use of noise properties in set theoretic estimation,” IEEE Trans. Signal Process. 39, 1630–1641 (1991).
-
(1991)
IEEE Trans. Signal Process
, vol.39
, pp. 1630-1641
-
-
Combettes, P.L.1
Trussell, H.J.2
-
2
-
-
0022091196
-
Signal synthesis in the presence of an inconsistent set of constraints
-
M. Goldburg and R. J. Marks II, “Signal synthesis in the presence of an inconsistent set of constraints,” IEEE Trans. Circuits Syst. CAS-32, 647–663 (1985).
-
(1985)
IEEE Trans. Circuits Syst
, vol.CAS-32
, pp. 647-663
-
-
Goldburg, M.1
Marks, R.J.2
-
3
-
-
0020766276
-
Signal restoration from phase by projections onto convex sets
-
A. Levi and H. Stark, “Signal restoration from phase by projections onto convex sets,” J. Opt. Soc. Am. 73, 810–822 (1983).
-
(1983)
J. Opt. Soc. Am
, vol.73
, pp. 810-822
-
-
Levi, A.1
Stark, H.2
-
4
-
-
0021493772
-
Image restoration by the method of generalized projections with application to restoration from amplitude
-
A. Levi and H. Stark, “Image restoration by the method of generalized projections with application to restoration from amplitude,” J. Opt. Soc. Am. A 1, 932–943 (1984).
-
(1984)
J. Opt. Soc. Am. A
, vol.1
, pp. 932-943
-
-
Levi, A.1
Stark, H.2
-
5
-
-
0020815094
-
Image restoration by convex projections in the presence of noise
-
M. I. Sezan and H. Stark, “Image restoration by convex projections in the presence of noise,” Appl. Opt. 22, 2781–2789 (1983).
-
(1983)
Appl. Opt
, vol.22
, pp. 2781-2789
-
-
Sezan, M.I.1
Stark, H.2
-
6
-
-
0022705171
-
Extensions of a result on the synthesis of signals in the presence of inconsistent constraints
-
D. C. Youla and V. Velasco, “Extensions of a result on the synthesis of signals in the presence of inconsistent constraints,” IEEE Trans. Circuits Syst. CAS-33, 465–468 (1986).
-
(1986)
IEEE Trans. Circuits Syst
, vol.CAS-33
, pp. 465-468
-
-
Youla, D.C.1
Velasco, V.2
-
7
-
-
0025535641
-
Method of successive projections for finding a common point of sets in metric spaces
-
P. L. Combettes and H. J. Trussell, “Method of successive projections for finding a common point of sets in metric spaces,” J. Optim. Theory Appl. 67, 487–507 (1990).
-
(1990)
J. Optim. Theory Appl
, vol.67
, pp. 487-507
-
-
Combettes, P.L.1
Trussell, H.J.2
-
8
-
-
0032208032
-
Generalized projection algorithms with applications to optics and signal restoration
-
T. Kotzer, N. Cohen, and J. Shamir, “Generalized projection algorithms with applications to optics and signal restoration,” Opt. Commun. 156, 77–91 (1998).
-
(1998)
Opt. Commun
, vol.156
, pp. 77-91
-
-
Kotzer, T.1
Cohen, N.2
Shamir, J.3
-
9
-
-
0031496463
-
A projection-based algorithm for consistent and inconsistent constraints
-
T. Kotzer, N. Cohen, and J. Shamir, “A projection-based algorithm for consistent and inconsistent constraints,” SIAM (Soc. Ind. Appl. Math.) J. Optim. 7, 527–546 (1997).
-
(1997)
SIAM (Soc. Ind. Appl. Math.) J. Optim
, vol.7
, pp. 527-546
-
-
Kotzer, T.1
Cohen, N.2
Shamir, J.3
-
10
-
-
0000198744
-
Block-iterative methods for parallel computation of solutions to convex feasibility problems
-
R. Aharoni and Y. Censor, “Block-iterative methods for parallel computation of solutions to convex feasibility problems,” Linear Algebr. Appl. 120, 165–175 (1989).
-
(1989)
Linear Algebr. Appl
, vol.120
, pp. 165-175
-
-
Aharoni, R.1
Censor, Y.2
-
11
-
-
0027579732
-
Signal recovery by best feasible approximation
-
P. L. Combettes, “Signal recovery by best feasible approximation,” IEEE Trans. Image Process. 2, 269–271 (1993).
-
(1993)
IEEE Trans. Image Process
, vol.2
, pp. 269-271
-
-
Combettes, P.L.1
-
12
-
-
0028543165
-
Inconsistent signal feasibility problems: Least-squares solutions in a product space
-
P. L. Combettes, “Inconsistent signal feasibility problems: least-squares solutions in a product space,” IEEE Trans. Signal Process. 42, 2955–2966 (1994).
-
(1994)
IEEE Trans. Signal Process
, vol.42
, pp. 2955-2966
-
-
Combettes, P.L.1
-
13
-
-
0000424337
-
A multiprojection algorithm using Bregman projections in a product space
-
Y. Censor and T. Elfving, “A multiprojection algorithm using Bregman projections in a product space,” Numer. Algorithms 8, 221–239 (1994).
-
(1994)
Numer. Algorithms
, vol.8
, pp. 221-239
-
-
Censor, Y.1
Elfving, T.2
-
14
-
-
0007687503
-
Image reconstruction by a novel parallel projection onto constraint set method
-
T. Kotzer, N. Cohen, and J. Shamir, “Image reconstruction by a novel parallel projection onto constraint set method,” Opt. Lett. 20, 1172–1174 (1995).
-
(1995)
Opt. Lett
, vol.20
, pp. 1172-1174
-
-
Kotzer, T.1
Cohen, N.2
Shamir, J.3
-
15
-
-
0000736540
-
Application of serial and parallel projection methods to correlation filter design
-
T. Kotzer, J. Rosen, and J. Shamir, “Application of serial and parallel projection methods to correlation filter design,” Appl. Opt. 34, 3883–3895 (1995).
-
(1995)
Appl. Opt
, vol.34
, pp. 3883-3895
-
-
Kotzer, T.1
Rosen, J.2
Shamir, J.3
-
16
-
-
0010012093
-
Digital signal restoration using fuzzy sets
-
M. R. Civanlar and H. J. Trussell, “Digital signal restoration using fuzzy sets,” IEEE Trans. Acoust., Speech, Signal Process. ASSP-34, 919–936 (1986).
-
(1986)
IEEE Trans. Acoust., Speech, Signal Process
, vol.ASSP-34
, pp. 919-936
-
-
Civanlar, M.R.1
Trussell, H.J.2
-
22
-
-
0000515054
-
From circuit theory to system theory
-
L. A. Zadeh, “From circuit theory to system theory,” Proc. IRE 50, 856–865 (1962).
-
(1962)
Proc. IRE
, vol.50
, pp. 856-865
-
-
Zadeh, L.A.1
-
23
-
-
34248666540
-
Fuzzy sets
-
L. A. Zadeh, “Fuzzy sets,” Inf. Control. 8, 338–353 (1965).
-
(1965)
Inf. Control
, vol.8
, pp. 338-353
-
-
Zadeh, L.A.1
-
24
-
-
0001831094
-
Fuzzy sets and systems
-
J. Fox, ed. (Polytechnic, Brooklyn, N.Y
-
L. A. Zadeh, “Fuzzy sets and systems,” in System Theory, Microwave Research Institute Symposia Series XV, J. Fox, ed. (Polytechnic, Brooklyn, N.Y. 1965), pp. 29–37.
-
(1965)
System Theory, Microwave Research Institute Symposia Series XV
, pp. 29-37
-
-
Zadeh, L.A.1
-
25
-
-
0005085353
-
The current interest in fuzzy optimization
-
C. V. Negoita, “The current interest in fuzzy optimization,” Fuzzy Sets Syst. 6, 261–269 (1981).
-
(1981)
Fuzzy Sets Syst
, vol.6
, pp. 261-269
-
-
Negoita, C.V.1
-
26
-
-
0030269065
-
Use of fuzzy logic to describe constraints derived from engineering judgment in genetic algorithms
-
R. Pearce and P. H. Cowley, “Use of fuzzy logic to describe constraints derived from engineering judgment in genetic algorithms,” IEEE Trans. Ind. Electron. 43, 535–540 (1996).
-
(1996)
IEEE Trans. Ind. Electron
, vol.43
, pp. 535-540
-
-
Pearce, R.1
Cowley, P.H.2
-
28
-
-
0038589643
-
Extension principle in fuzzy optimization
-
J. Ramík, “Extension principle in fuzzy optimization,” Fuzzy Sets Syst. 19, 29–35 (1986).
-
(1986)
Fuzzy Sets Syst
, vol.19
, pp. 29-35
-
-
Ramík, J.1
-
29
-
-
0021201713
-
Decomposition through formalization in a product space
-
G. Pierra, “Decomposition through formalization in a product space,” Math. Program. 18, 96–115 (1984).
-
(1984)
Math. Program
, vol.18
, pp. 96-115
-
-
Pierra, G.1
|