-
1
-
-
33845551651
-
-
(a) Casey, C. P.; Jordan, R. F.; Rheingold, A. L. J. Am. Chem. Soc. 1983, 105, 665.
-
(1983)
J. Am. Chem. Soc.
, vol.105
, pp. 665
-
-
Casey, C.P.1
Jordan, R.F.2
Rheingold, A.L.3
-
2
-
-
0000785488
-
-
(b) Casey, C. P.; Jordan, R. F.; Rheingold, A. L. Organometallics 1984, 3, 504.
-
(1984)
Organometallics
, vol.3
, pp. 504
-
-
Casey, C.P.1
Jordan, R.F.2
Rheingold, A.L.3
-
7
-
-
0001468907
-
-
(g) Selent, D.; Beckhaus, R.; Pickardt, J. Organometallics 1993, 12, 2857.
-
(1993)
Organometallics
, vol.12
, pp. 2857
-
-
Selent, D.1
Beckhaus, R.2
Pickardt, J.3
-
8
-
-
0345870721
-
-
(h) Friedrich, S.; Gade, L. H.; Scowen, I. J.; McPartlin, M. Organometallics 1995, 14, 5344.
-
(1995)
Organometallics
, vol.14
, pp. 5344
-
-
Friedrich, S.1
Gade, L.H.2
Scowen, I.J.3
McPartlin, M.4
-
9
-
-
0029811679
-
-
(i) Friedrich, S.; Gade, L. H.; Scowen, I. J.; McPartlin, M. Angew. Chem., Int. Ed. Engl. 1996, 55, 1338.
-
(1996)
Angew. Chem., Int. Ed. Engl.
, vol.55
, pp. 1338
-
-
Friedrich, S.1
Gade, L.H.2
Scowen, I.J.3
McPartlin, M.4
-
11
-
-
33748224052
-
-
(b) Bursten, B. E.; Strittmatter, R. J. Angew. Chem., Int. Ed. Engl. 1991, 30, 1069.
-
(1991)
Angew. Chem., Int. Ed. Engl.
, vol.30
, pp. 1069
-
-
Bursten, B.E.1
Strittmatter, R.J.2
-
12
-
-
0000820430
-
-
Ferguson, G. S.; Wolczanski, P. T.; Parkanyi, L.; Zonnevylle, M. Organometallics 1988, 7, 1967.
-
(1988)
Organometallics
, vol.7
, pp. 1967
-
-
Ferguson, G.S.1
Wolczanski, P.T.2
Parkanyi, L.3
Zonnevylle, M.4
-
13
-
-
0001359080
-
-
Selent, D.; Ramm, M.; Janiak, C. J. Organomet. Chem. 1995, 501, 235.
-
(1995)
J. Organomet. Chem.
, vol.501
, pp. 235
-
-
Selent, D.1
Ramm, M.2
Janiak, C.3
-
15
-
-
0007863363
-
-
Schmid, G.; Stutte, B.; Boese, R. Chem. Ber. 1978, 111, 1239.
-
(1978)
Chem. Ber.
, vol.111
, pp. 1239
-
-
Schmid, G.1
Stutte, B.2
Boese, R.3
-
18
-
-
0038596731
-
-
(c) Miehlich, B.; Savin, A.; Stoll, H.; Preuss, H. Chem. Phys. Lett. 1989, 157, 200.
-
(1989)
Chem. Phys. Lett.
, vol.157
, pp. 200
-
-
Miehlich, B.1
Savin, A.2
Stoll, H.3
Preuss, H.4
-
22
-
-
36148995600
-
-
Reed, A. E.; Weinstock, R. B.; Weinhold, F. J. Chem. Phys. 1985, 83, 735.
-
(1985)
J. Chem. Phys.
, vol.83
, pp. 735
-
-
Reed, A.E.1
Weinstock, R.B.2
Weinhold, F.3
-
23
-
-
3543023524
-
-
note
-
In general, the B3LYP charges suggest a slightly more ionic character of the density. This may be interpreted as being due to the fact that the B3LYP functional contains an intermediate between a pure (gradient corrected) exchange functional and the Hartree-Fock exchange functional; the Hartree-Fock theory being known to yield somewhat too ionic electron densities.
-
-
-
-
24
-
-
3543037198
-
-
note
-
In CDA, the molecular orbitals of the complex are broken down into contributions from occupied and virtual orbitals of the charged closed-shell fragments.
-
-
-
-
26
-
-
3543035433
-
-
note
-
We would like to point out that CDA performs an analysis of the complex MOs in terms of fragment MOs and that the nonorthogonality of the MOs of different fragments may lead to similar difficulties as encountered in MPA, especially when the basis set contains diffuse functions. We have looked into this by carrying out a CDA using a small SVDP basis set described in the calculational section at the end of this paper since this basis set does not contain diffuse d functions in contrast to the TZVDP basis set employed in all our calculations. In this case, the negative back-bonding term is indeed smaller (b ≈ 0.1); however, the residual term Δ is even larger (between -0.17 and -0.23 depending on the compound and the density functional employed).
-
-
-
-
28
-
-
0000809379
-
-
Based on similar observations, it was argued that AIM populations suffer from an artificial charge transfer from an atom with low electronegativity to an adjacent atom with large electronegativity, which was claimed solely to be the consequence of atomic orbital size and not due to differences in electronegativity: Perrin, C. L. J. Am. Chem. Soc. 1991, 113, 2865. It has been demonstrated, however, that the above argument relies on an oversimplified model and that AIM populations do not depend on atomic size: Gatti, C.; Fantucci, P. J. Phys. Chem. 1993, 97, 11677.
-
(1991)
J. Am. Chem. Soc.
, vol.113
, pp. 2865
-
-
Perrin, C.L.1
-
29
-
-
0037635546
-
-
Based on similar observations, it was argued that AIM populations suffer from an artificial charge transfer from an atom with low electronegativity to an adjacent atom with large electronegativity, which was claimed solely to be the consequence of atomic orbital size and not due to differences in electronegativity: Perrin, C. L. J. Am. Chem. Soc. 1991, 113, 2865. It has been demonstrated, however, that the above argument relies on an oversimplified model and that AIM populations do not depend on atomic size: Gatti, C.; Fantucci, P. J. Phys. Chem. 1993, 97, 11677.
-
(1993)
J. Phys. Chem.
, vol.97
, pp. 11677
-
-
Gatti, C.1
Fantucci, P.2
-
33
-
-
33751157179
-
-
Ángyán, J. G.; Loos, M.; Mayer, I. J. Phys. Chem. 1994, 98, 5244.
-
(1994)
J. Phys. Chem.
, vol.98
, pp. 5244
-
-
Ángyán, J.G.1
Loos, M.2
Mayer, I.3
-
34
-
-
3543047578
-
-
note
-
It should be noted that for homopolar bonds the positions of the bond critical points of AIM theory and of the ELF maxima will agree and that the ELF distribution will be symmetrical around that point.
-
-
-
-
35
-
-
0004133516
-
-
Gaussian, Inc.: Pittsburgh, PA
-
Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T.; Petersson, G. A.; Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrzewski, V. G.; Ortiz, J. V.; Foresman, J. B.; Cioslowski, J.; Stefanov, B. B.; Nanavakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.; Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart, J. P.; Head-Gordon, M.; Gonzalez, C.; Pople, J. A. Gaussian 94, Revision D.4; (Gaussian, Inc.: Pittsburgh, PA, 1995).
-
(1995)
Gaussian 94, Revision D.4
-
-
Frisch, M.J.1
Trucks, G.W.2
Schlegel, H.B.3
Gill, P.M.W.4
Johnson, B.G.5
Robb, M.A.6
Cheeseman, J.R.7
Keith, T.8
Petersson, G.A.9
Montgomery, J.A.10
Raghavachari, K.11
Al-Laham, M.A.12
Zakrzewski, V.G.13
Ortiz, J.V.14
Foresman, J.B.15
Cioslowski, J.16
Stefanov, B.B.17
Nanavakkara, A.18
Challacombe, M.19
Peng, C.Y.20
Ayala, P.Y.21
Chen, W.22
Wong, M.W.23
Andres, J.L.24
Replogle, E.S.25
Gomperts, R.26
Martin, R.L.27
Fox, D.J.28
Binkley, J.S.29
Defrees, D.J.30
Baker, J.31
Stewart, J.P.32
Head-Gordon, M.33
Gonzalez, C.34
Pople, J.A.35
more..
-
36
-
-
84986513726
-
-
Biegler-König, F. W.; Bader, R. F. W.; Tang, T. H. J. Comput. Chem. 1982, 3, 317.
-
(1982)
J. Comput. Chem.
, vol.3
, pp. 317
-
-
Biegler-König, F.W.1
Bader, R.F.W.2
Tang, T.H.3
-
37
-
-
79960364722
-
-
Center for Scientific Computing: Espoo, Finland
-
Laaksonen, L. gOpenMol; Center for Scientific Computing: Espoo, Finland, 1997.
-
(1997)
gOpenMol
-
-
Laaksonen, L.1
-
38
-
-
3543014007
-
-
Jansen, G. Unpublished results
-
Jansen, G. Unpublished results.
-
-
-
-
39
-
-
0004261805
-
-
Supercomputer Computations Research Institute, Florida State University: Tallahassee
-
Pepke, E.; Murray, J.; Lyons, J.; Hwu, T.-Z. SciAn; Supercomputer Computations Research Institute, Florida State University: Tallahassee, 1993.
-
(1993)
SciAn
-
-
Pepke, E.1
Murray, J.2
Lyons, J.3
Hwu, T.-Z.4
-
40
-
-
0039209924
-
-
Schäfer, A.; Huber, C.; Ahlrichs, R. J. Chem. Phys. 1994, 100, 5829.
-
(1994)
J. Chem. Phys.
, vol.100
, pp. 5829
-
-
Schäfer, A.1
Huber, C.2
Ahlrichs, R.3
-
42
-
-
26344435738
-
-
Schäfer, A.; Horn, H.; Ahlrichs, R. J. Chem. Phys. 1992, 97, 2571.
-
(1992)
J. Chem. Phys.
, vol.97
, pp. 2571
-
-
Schäfer, A.1
Horn, H.2
Ahlrichs, R.3
-
43
-
-
0343035732
-
-
Schätzlein, A.; Schubart, M.; Findeis, B.; Gade, L. H.; Fickert, C.; Pikl, R.; Kiefer, W. J. Mol. Struct. 1997, 408/409, 373.
-
(1997)
J. Mol. Struct.
, vol.408-409
, pp. 373
-
-
Schätzlein, A.1
Schubart, M.2
Findeis, B.3
Gade, L.H.4
Fickert, C.5
Pikl, R.6
Kiefer, W.7
|