-
2
-
-
0012767387
-
-
A. H. Holway and E. G. Boring, Am. J. Psychol. 54, 21 (1941); A. S. Gilinsky, ibid. 68, 173 (1955).
-
(1955)
Am. J. Psychol.
, vol.68
, pp. 173
-
-
Gilinsky, A.S.1
-
3
-
-
2642685665
-
-
N. Humphrey and L. Weiskrantz, Q. J. Exp. Psychol. 21, 255 (1969); L. G. Ungerleider, L. Ganz, K. H. Pribram, Exp. Brain Res. 27, 251 (1977).
-
(1969)
Q. J. Exp. Psychol.
, vol.21
, pp. 255
-
-
Humphrey, N.1
Weiskrantz, L.2
-
4
-
-
0017343296
-
-
N. Humphrey and L. Weiskrantz, Q. J. Exp. Psychol. 21, 255 (1969); L. G. Ungerleider, L. Ganz, K. H. Pribram, Exp. Brain Res. 27, 251 (1977).
-
(1977)
Exp. Brain Res.
, vol.27
, pp. 251
-
-
Ungerleider, L.G.1
Ganz, L.2
Pribram, K.H.3
-
5
-
-
0018830619
-
-
H. Sakata, H. Shibutani, K. Kawano, J. Neurophysiol. 43, 1654 (1980); R. A. Andersen and V. B. Mountcastle, J. Neurosci. 3, 532 (1983); J. W. Gnadt and L. F. Mays, J. Neurophysiol. 73, 280 (1995); C. Galletti and P. P. Battaglini, J. Neurosci. 9, 1112 (1989).
-
(1980)
J. Neurophysiol.
, vol.43
, pp. 1654
-
-
Sakata, H.1
Shibutani, H.2
Kawano, K.3
-
6
-
-
0020962414
-
-
H. Sakata, H. Shibutani, K. Kawano, J. Neurophysiol. 43, 1654 (1980); R. A. Andersen and V. B. Mountcastle, J. Neurosci. 3, 532 (1983); J. W. Gnadt and L. F. Mays, J. Neurophysiol. 73, 280 (1995); C. Galletti and P. P. Battaglini, J. Neurosci. 9, 1112 (1989).
-
(1983)
J. Neurosci.
, vol.3
, pp. 532
-
-
Andersen, R.A.1
Mountcastle, V.B.2
-
7
-
-
0028813389
-
-
H. Sakata, H. Shibutani, K. Kawano, J. Neurophysiol. 43, 1654 (1980); R. A. Andersen and V. B. Mountcastle, J. Neurosci. 3, 532 (1983); J. W. Gnadt and L. F. Mays, J. Neurophysiol. 73, 280 (1995); C. Galletti and P. P. Battaglini, J. Neurosci. 9, 1112 (1989).
-
(1995)
J. Neurophysiol.
, vol.73
, pp. 280
-
-
Gnadt, J.W.1
Mays, L.F.2
-
8
-
-
0024498893
-
-
H. Sakata, H. Shibutani, K. Kawano, J. Neurophysiol. 43, 1654 (1980); R. A. Andersen and V. B. Mountcastle, J. Neurosci. 3, 532 (1983); J. W. Gnadt and L. F. Mays, J. Neurophysiol. 73, 280 (1995); C. Galletti and P. P. Battaglini, J. Neurosci. 9, 1112 (1989).
-
(1989)
J. Neurosci.
, vol.9
, pp. 1112
-
-
Galletti, C.1
Battaglini, P.P.2
-
10
-
-
0026806983
-
-
Y. Trotter, S. Celebrini, B. Stricanne, S. Thorpe, M. Imbert, Science 257, 1279 (1992).
-
(1992)
Science
, vol.257
, pp. 1279
-
-
Trotter, Y.1
Celebrini, S.2
Stricanne, B.3
Thorpe, S.4
Imbert, M.5
-
11
-
-
0029981129
-
-
_, J. Neurophysiol. 76, 2872 (1996).
-
(1996)
J. Neurophysiol.
, vol.76
, pp. 2872
-
-
-
12
-
-
0023771525
-
-
S. P. Wise and R. Desimone, Science 242, 736 (1988); R. A. Andersen, L. Snyder, C.-S. Li, B. Stricanne, Curr. Opin. Neurobiol. 3, 171 (1993).
-
(1988)
Science
, vol.242
, pp. 736
-
-
Wise, S.P.1
Desimone, R.2
-
13
-
-
0027315467
-
-
S. P. Wise and R. Desimone, Science 242, 736 (1988); R. A. Andersen, L. Snyder, C.-S. Li, B. Stricanne, Curr. Opin. Neurobiol. 3, 171 (1993).
-
(1993)
Curr. Opin. Neurobiol.
, vol.3
, pp. 171
-
-
Andersen, R.A.1
Snyder, L.2
Li, C.-S.3
Stricanne, B.4
-
14
-
-
0018974108
-
-
S. Petersen, J. Baker, J. Allman, Brain Res. 197, 507 (1980); R. Desimone and S. J. Schein, J. Neurophysiol. 57, 835 (1987).
-
(1980)
Brain Res.
, vol.197
, pp. 507
-
-
Petersen, S.1
Baker, J.2
Allman, J.3
-
15
-
-
0023092616
-
-
S. Petersen, J. Baker, J. Allman, Brain Res. 197, 507 (1980); R. Desimone and S. J. Schein, J. Neurophysiol. 57, 835 (1987).
-
(1987)
J. Neurophysiol.
, vol.57
, pp. 835
-
-
Desimone, R.1
Schein, S.J.2
-
16
-
-
0023605166
-
-
Recording chambers were positioned to permit access to foveal and perifoveal V4 as well as V1 and V2. Two macaque monkeys were trained to reliably fixate a small spot on a computer monitor for a juice reward, and fixation was monitored monocularly with a noninvasive infrared video-based eye tracker [J. Barbur, W. Thomson, P. Forsyth, Clin. Vision Sci. 2, 131 (1987)].
-
(1987)
Clin. Vision Sci.
, vol.2
, pp. 131
-
-
Barbur, J.1
Thomson, W.2
Forsyth, P.3
-
17
-
-
2642688718
-
-
note
-
-2. The bars were swept over the receptive field during fixation at the preferred orientation, direction, and color for the cell. Speed and length of excursion were scaled proportionally with distance to keep retinal speed and excursion constant.
-
-
-
-
18
-
-
0017689588
-
-
Distance modulation and disparity modulation are distinct properties, therefore we use the terms "nearness" and "farness" to distinguish monotonic distance modulation from cells showing near and far binocular disparity-tuning as described by G. F. Poggio and B. Fischer [J. Neurophysiol. 40, 1392 (1977)]. Classification of cells as monotonic (nearness or farness) is not completely certain, because a maximum or minimum could conceivably occur at an unsampled distance. A study of distance and disparity in V1 appears to show that for disparity-selective cells, farness cells are more common than nearness cells (6), but differences in stimuli, methods, and analysis preclude direct comparison with our results.
-
(1977)
J. Neurophysiol.
, vol.40
, pp. 1392
-
-
Poggio, G.F.1
Fischer, B.2
-
19
-
-
0027503610
-
-
Tuning for absolute distance (at least for nearness) has been reported in the ventral intraparietal area of posterior parietal cortex [C. L. Colby, J. R. Duhamel, M. E. Goldberg, J. Neurophysiol. 69, 902 (1993)] and in ventral premotor cortex [M. Gentilucci et al., Exp. Brain Res. 50, 464 (1983); L. Fogassi et al., J. Neurophysiol. 76, 141 (1996)]. However, a study that manipulated viewing distance and binocular disparity in V1 did not find the systematic shifts in preferred disparity with viewing distance that absolute distance tuning would predict (5, 6). Moreover, a cell tuned to an intermediate absolute distance would not show monotonic response with viewing distance, as the majority of cells here do. Nonmonotonic cells could be tuned for absolute distance, but these cells made up only 13% of our sample.
-
(1993)
J. Neurophysiol.
, vol.69
, pp. 902
-
-
Colby, C.L.1
Duhamel, J.R.2
Goldberg, M.E.3
-
20
-
-
0021019736
-
-
Tuning for absolute distance (at least for nearness) has been reported in the ventral intraparietal area of posterior parietal cortex [C. L. Colby, J. R. Duhamel, M. E. Goldberg, J. Neurophysiol. 69, 902 (1993)] and in ventral premotor cortex [M. Gentilucci et al., Exp. Brain Res. 50, 464 (1983); L. Fogassi et al., J. Neurophysiol. 76, 141 (1996)]. However, a study that manipulated viewing distance and binocular disparity in V1 did not find the systematic shifts in preferred disparity with viewing distance that absolute distance tuning would predict (5, 6). Moreover, a cell tuned to an intermediate absolute distance would not show monotonic response with viewing distance, as the majority of cells here do. Nonmonotonic cells could be tuned for absolute distance, but these cells made up only 13% of our sample.
-
(1983)
Exp. Brain Res.
, vol.50
, pp. 464
-
-
Gentilucci, M.1
-
21
-
-
0030014948
-
-
Tuning for absolute distance (at least for nearness) has been reported in the ventral intraparietal area of posterior parietal cortex [C. L. Colby, J. R. Duhamel, M. E. Goldberg, J. Neurophysiol. 69, 902 (1993)] and in ventral premotor cortex [M. Gentilucci et al., Exp. Brain Res. 50, 464 (1983); L. Fogassi et al., J. Neurophysiol. 76, 141 (1996)]. However, a study that manipulated viewing distance and binocular disparity in V1 did not find the systematic shifts in preferred disparity with viewing distance that absolute distance tuning would predict (5, 6). Moreover, a cell tuned to an intermediate absolute distance would not show monotonic response with viewing distance, as the majority of cells here do. Nonmonotonic cells could be tuned for absolute distance, but these cells made up only 13% of our sample.
-
(1996)
J. Neurophysiol.
, vol.76
, pp. 141
-
-
Fogassi, L.1
-
22
-
-
2642598115
-
-
note
-
Cells were assigned to a visual cortical area based on receptive field position, size, and properties, and position relative to the lunate sulcus. Uncertainty about whether certain cells were in V1 or V2 led us to combine V1 and V2 for quantitative analysis.
-
-
-
-
23
-
-
0001149246
-
-
H. Wallach and C. Zuckerman, Am. J. Psychol. 76, 404 (1963); H. W. Leibowitz and D. Moore, J. Opt. Soc. Am. 56, 1120 (1966); T. S. Collett, U. Schwarz, E. C. Sobel, Perception 20, 733 (1991).
-
(1963)
Am. J. Psychol.
, vol.76
, pp. 404
-
-
Wallach, H.1
Zuckerman, C.2
-
24
-
-
0013935754
-
-
H. Wallach and C. Zuckerman, Am. J. Psychol. 76, 404 (1963); H. W. Leibowitz and D. Moore, J. Opt. Soc. Am. 56, 1120 (1966); T. S. Collett, U. Schwarz, E. C. Sobel, Perception 20, 733 (1991).
-
(1966)
J. Opt. Soc. Am.
, vol.56
, pp. 1120
-
-
Leibowitz, H.W.1
Moore, D.2
-
25
-
-
0026265777
-
-
H. Wallach and C. Zuckerman, Am. J. Psychol. 76, 404 (1963); H. W. Leibowitz and D. Moore, J. Opt. Soc. Am. 56, 1120 (1966); T. S. Collett, U. Schwarz, E. C. Sobel, Perception 20, 733 (1991).
-
(1991)
Perception
, vol.20
, pp. 733
-
-
Collett, T.S.1
Schwarz, U.2
Sobel, E.C.3
-
26
-
-
0025107158
-
-
K. Nakayama and S. Shimojo, Vision Res. 30, 1811 (1990); J. E. W. Mayhew and H. C. Longuet-Higgins, Nature 297, 376 (1982); B. J. Rogers and M. F. Bradshaw, ibid. 339, 253 (1993).
-
(1990)
Vision Res.
, vol.30
, pp. 1811
-
-
Nakayama, K.1
Shimojo, S.2
-
27
-
-
0020474096
-
-
K. Nakayama and S. Shimojo, Vision Res. 30, 1811 (1990); J. E. W. Mayhew and H. C. Longuet-Higgins, Nature 297, 376 (1982); B. J. Rogers and M. F. Bradshaw, ibid. 339, 253 (1993).
-
(1982)
Nature
, vol.297
, pp. 376
-
-
Mayhew, J.E.W.1
Longuet-Higgins, H.C.2
-
28
-
-
0027390351
-
-
K. Nakayama and S. Shimojo, Vision Res. 30, 1811 (1990); J. E. W. Mayhew and H. C. Longuet-Higgins, Nature 297, 376 (1982); B. J. Rogers and M. F. Bradshaw, ibid. 339, 253 (1993).
-
(1993)
Nature
, vol.339
, pp. 253
-
-
Rogers, B.J.1
Bradshaw, M.F.2
-
29
-
-
2642602160
-
-
note
-
To ensure that ocular artifacts were not significant, a number of precautions were taken. Both monkeys were refracted by an optometrist using slit retinoscopy to establish that they were capable of accommodation over the range of distances used in the experiment (uncertainty <0.25 diopters). During the experiments, the monitored eye varied its position with distance consistent with the appropriate change of vergence. Pupil radius was measured with the eye tracker and did not vary with distance in either monkey (2.33 ± 0.01 mm; 1.73 ± 0.02 mm). The monkeys were required to maintain fixation within a 0.25° square fixation window during the trial.
-
-
-
-
30
-
-
2642592040
-
-
note
-
If viewing distance affected neural response, the measurements were repeated under either binocular or monocular restricted-field viewing conditions. Measurements were then repeated under the initial viewing conditions. The monkey viewed the stimuli through either monocular or binocular apertures (6.5° diameter). The remainder of the scene was masked such that only the monitor screen was visible to the monkey.
-
-
-
-
31
-
-
2642623667
-
-
note
-
Because all receptive fields were in or close to the fovea (<2.5° eccentric in all cases), horizontal disparity of stimuli relative to the fixation point would be expected to be very close to zero at all distances. However, if the monkeys made vergence errors during fixation that varied systematically with distance, the responses of disparity-selective neurons could vary with viewing distance during binocular viewing. In the absence of binocular disparity, this argument does not apply, and 15 of 33 neurons maintained distance modulation under monocular restricted-field viewing, demonstrating that distance modulation cannot be attributed to fixation-induced disparity. An independent line of evidence on this point is provided by the modulation of spontaneous activity observed in the absence of a stimulus in half the neurons studied (88/178, P < 0.01).
-
-
-
-
32
-
-
2642694780
-
-
note
-
For this cell, manipulating the frame size had no effect (Fig. 2E; see figure legend for details), ruling out a center-surround artifact. Local image variations with viewing distance, such as slight changes in brightness or contrast, or changes in pixellation, are common to all the viewing conditions and cannot account for the difference between full-field and restricted-field responses. Nor can fixation disparity-induced horizontal disparity be responsible, because distance modulation is not dependent on binocular viewing. Therefore, local image variation with viewing distance cannot account for distance modulation.
-
-
-
-
33
-
-
0023877474
-
-
D. Zipser and R. A. Andersen, Nature 331, 679 (1988); A. Pouget and T. J. Sejnowski, Cereb. Cortex 4, 314 (1994).
-
(1988)
Nature
, vol.331
, pp. 679
-
-
Zipser, D.1
Andersen, R.A.2
-
35
-
-
0002651020
-
-
D. J. Ingle, M. A. Goodale, R. J. W. Mansfield, Eds. MIT Press, Cambridge, MA
-
L. G. Ungerleider and M. Mishkin, in Analysis of Visual Behavior, D. J. Ingle, M. A. Goodale, R. J. W. Mansfield, Eds. (MIT Press, Cambridge, MA, 1982), pp. 549-586.
-
(1982)
Analysis of Visual Behavior
, pp. 549-586
-
-
Ungerleider, L.G.1
Mishkin, M.2
-
36
-
-
0026565214
-
-
M. A. Goodale and A. D. Milner, Trends Neurosci. 15, 20 (1992); A. D. Milner and M. A. Goodale, The Visual Brain in Action (Oxford Univ. Press, Oxford, 1995).
-
(1992)
Trends Neurosci.
, vol.15
, pp. 20
-
-
Goodale, M.A.1
Milner, A.D.2
-
39
-
-
2642601177
-
-
note
-
We thank A. Leonardo for contributions to the experiments; E. Dobbins, M. Lewicki, J. Mazer, and D. Rosenbluth for reviewing the manuscript; T. Annau, M. Lewicki, and J. Mazer for assistance with software tools; R. Desimone for providing data collection software; T. Joe for optometric assistance; and H. Weld and J. Baer for veterinary care. All methods of animal care conform to the guidelines of the Caltech Institutional Animal Care and Use Committee and the NIH.
-
-
-
|