메뉴 건너뛰기




Volumn 279, Issue 5350, 1998, Pages 534-537

True polar wander as a mechanism for second-order sea-level variations

Author keywords

[No Author keywords available]

Indexed keywords

CRETACEOUS; ROTATION POLE; SEA LEVEL VARIATION; TERTIARY;

EID: 0032559276     PISSN: 00368075     EISSN: None     Source Type: Journal    
DOI: 10.1126/science.279.5350.534     Document Type: Article
Times cited : (48)

References (48)
  • 1
    • 0003908594 scopus 로고
    • Springer-Verlag, New York
    • Sea-level variations, as reflected in stratigraphic cycles, are classified in terms of their duration. For example, following A. D. Miall [Principles of Sedimentary Basin Analysis (Springer-Verlag, New York, 1990)], we define second-order cycles as lasting 10 million to 100 million years and third-order cycles as lasting 1 million to 10 million years.
    • (1990) Principles of Sedimentary Basin Analysis
    • Miall, A.D.1
  • 7
    • 0025664777 scopus 로고
    • M. Gurnis, Science 250, 970 (1990).
    • (1990) Science , vol.250 , pp. 970
    • Gurnis, M.1
  • 8
    • 0024899337 scopus 로고
    • J. X. Mitrovica, C. Beaumont, G. T. Jarvis, Tectonics 8, 1079 (1989); M. Gurnis, Geology 21, 29 (1993); Nature 364, 589 (1993); J. X. Mitrovica et al., Geodynamics 22, 79 (1996).
    • (1989) Tectonics , vol.8 , pp. 1079
    • Mitrovica, J.X.1    Beaumont, C.2    Jarvis, G.T.3
  • 9
    • 84879882194 scopus 로고
    • J. X. Mitrovica, C. Beaumont, G. T. Jarvis, Tectonics 8, 1079 (1989); M. Gurnis, Geology 21, 29 (1993); Nature 364, 589 (1993); J. X. Mitrovica et al., Geodynamics 22, 79 (1996).
    • (1993) Geology , vol.21 , pp. 29
    • Gurnis, M.1
  • 10
    • 0027458203 scopus 로고
    • J. X. Mitrovica, C. Beaumont, G. T. Jarvis, Tectonics 8, 1079 (1989); M. Gurnis, Geology 21, 29 (1993); Nature 364, 589 (1993); J. X. Mitrovica et al., Geodynamics 22, 79 (1996).
    • (1993) Nature , vol.364 , pp. 589
  • 11
    • 0030477824 scopus 로고    scopus 로고
    • J. X. Mitrovica, C. Beaumont, G. T. Jarvis, Tectonics 8, 1079 (1989); M. Gurnis, Geology 21, 29 (1993); Nature 364, 589 (1993); J. X. Mitrovica et al., Geodynamics 22, 79 (1996).
    • (1996) Geodynamics , vol.22 , pp. 79
    • Mitrovica, J.X.1
  • 13
    • 0003347725 scopus 로고
    • R. Revelle, Ed. National Academy Press, Washington, DC
    • A. D. Miall (1), for example, has criticized the seismic stratigraphic method of sea-level analysis. An alternate method of estimating long-term eustatic sea-level trends involves a correlation of continental flooding events [for example, C. G. A. Harrison, in Sea Level Change, R. Revelle, Ed. (National Academy Press, Washington, DC, 1990), pp. 141-158]. This approach is susceptible to contamination from regional, tectonically driven, sea-level signals (8).
    • (1990) Sea Level Change , pp. 141-158
    • Harrison, C.G.A.1
  • 14
    • 84983858000 scopus 로고
    • A. J. Eardley, Am. Sci. 52 (no. 4), 488 (1964).
    • (1964) Am. Sci. , vol.52 , Issue.4 , pp. 488
    • Eardley, A.J.1
  • 16
    • 0342537498 scopus 로고
    • N.-A. Mörner, Geology 9, 344 (1981); Cretaceous Res. 1, 329 (1980).
    • (1981) Geology , vol.9 , pp. 344
    • Mörner, N.-A.1
  • 17
    • 0019232413 scopus 로고
    • N.-A. Mörner, Geology 9, 344 (1981); Cretaceous Res. 1, 329 (1980).
    • (1980) Cretaceous Res. , vol.1 , pp. 329
  • 18
    • 0025621791 scopus 로고
    • R. Sabadini, C. Doglioni, and D. A. Yuen [Nature 345, 708 (1990)] considered the sea-level response of a radially stratified viscoelastic Earth subject to a constant polar wander of 1° per million years. Their calculations suggest that this level of TPW can produce ∼20 to 50 m of sea-level change over 1 My.
    • (1990) Nature , vol.345 , pp. 708
    • Sabadini, R.1    Doglioni, C.2    Yuen, D.A.3
  • 21
    • 0025660492 scopus 로고
    • G. E. Williams, J. Phys. Earth 38, 475 (1990); Geophys. Res. Lett. 24, 421 (1997). Williams in the 1997 paper analyzed variations in the thickness of tidal rythmites and inferred that there were 401 ± 7 sidereal days per year at 620 Ma compared with the present value of 366.24 sidereal days per year. We assume that the change in the angular momentum over this time interval is linear in order to derive a variation in rotation rate over the last 130 My.
    • (1990) J. Phys. Earth , vol.38 , pp. 475
    • Williams, G.E.1
  • 22
    • 0031070599 scopus 로고    scopus 로고
    • G. E. Williams, J. Phys. Earth 38, 475 (1990); Geophys. Res. Lett. 24, 421 (1997). Williams in the 1997 paper analyzed variations in the thickness of tidal rythmites and inferred that there were 401 ± 7 sidereal days per year at 620 Ma compared with the present value of 366.24 sidereal days per year. We assume that the change in the angular momentum over this time interval is linear in order to derive a variation in rotation rate over the last 130 My.
    • (1997) Geophys. Res. Lett. , vol.24 , pp. 421
  • 24
    • 0002853703 scopus 로고
    • S. C. Cohen and P. Vanicek, Eds. American Geophysical Union, Washington, DC, 18
    • In the context of TPW induced by glacial isostatic adjustment, see D. Han and J. Wahr, in Slow Deformations and Transmission of Stress in the Earth, S. C. Cohen and P. Vanicek, Eds. (American Geophysical Union, Washington, DC, 1989), pp. 1-6; (18); B. G. Bills and T. S. James, Geophys. Res. Lett. 23, 3023 (1996).
    • (1989) Slow Deformations and Transmission of Stress in the Earth , pp. 1-6
    • Han, D.1    Wahr, J.2
  • 25
    • 0030265207 scopus 로고    scopus 로고
    • In the context of TPW induced by glacial isostatic adjustment, see D. Han and J. Wahr, in Slow Deformations and Transmission of Stress in the Earth, S. C. Cohen and P. Vanicek, Eds. (American Geophysical Union, Washington, DC, 1989), pp. 1-6; (18); B. G. Bills and T. S. James, Geophys. Res. Lett. 23, 3023 (1996).
    • (1996) Geophys. Res. Lett. , vol.23 , pp. 3023
    • Bills, B.G.1    James, T.S.2
  • 26
    • 15444356335 scopus 로고    scopus 로고
    • note
    • TPW acts to perturb the centrifugal potential associated with Earth rotation. The geographically varying component of this potential has an ellipsoidal (that is, degree two and order zero) form. The perturbing potential is thus the difference between two ellipsoidal forms whose axes are offset by a slight rotation. This difference, and the sea-level change that results, has a geometry (Fig. 3B) that may be described by the surface spherical harmonic of degree two and order one (14, 18, 19). As polar wander proceeds, the instantaneous orientation of the quadrants of this surface spherical harmonic (see Fig. 3B) changes.
  • 27
    • 15444358083 scopus 로고    scopus 로고
    • note
    • We found no previous mention of the obvious correlation between the sea-level trend in Fig. 1 and the sense of the polar motion evident in Fig. 2.
  • 28
    • 15444359753 scopus 로고    scopus 로고
    • note
    • The equation governing this calculation is derived by G. A. Milne and J. X. Mitrovica (18) (see their equations A7 through A10). The minor adjustments required to consider the case of internally forced TPW are discussed below their equation A10. The sea-level equation we solve incorporates not only the effect of TPW on both the geoid and solid surface but also the self-gravitation and loading effect of a time-dependent ocean distribution.
  • 30
    • 15444339065 scopus 로고    scopus 로고
    • note
    • The boundary between the upper-and lower-mantle region is taken to be at a depth of 660 km.
  • 32
    • 0011613236 scopus 로고
    • Past changes in site location were derived from E. Irving, Geophys. Surv. 5, 299 (1983).
    • (1983) Geophys. Surv. , vol.5 , pp. 299
    • Irving, E.1
  • 33
    • 0021549661 scopus 로고
    • ∞]. We have found that the dominant, normal-mode contribution arises from the so-called M1 mode. The M1 mode arises from a deflection of the density discontinuity at a depth of 660 km between the upper and lower mantle. Thus, excitation of the mode requires that the discontinuity behaves nonadiabatically (that is, effectively as a chemical boundary) on the time scales we are considering. If this is not the case, then the mode would not be excited and the M1 contribution would vanish. As an example, the peak ∼54 m signal in Fig. 4 (curve A) has a contribution of ∼43 m from the elastic lithosphere and ∼11 m from the M1 mode.
    • (1984) Geophys. J. R. Astron. Soc. , vol.76 , pp. 753
    • Wu, P.1    Peltier, W.R.2
  • 34
    • 15444347355 scopus 로고    scopus 로고
    • note
    • We define rotational colatitude as the angular distance of a site from the instantaneous north pole of rotation.
  • 35
    • 15444357059 scopus 로고    scopus 로고
    • note
    • In the seismic stratigraphic analysis of short-term (third-order cycles and higher) sea-level change (2, 4), North American and European sites dominate (Fig. 3C). The relative proximity of these sites suggests that they will experience similar TPW-induced sea-level trends. Thus, as has been suggested (14), it is unclear to what extent eustatic versus (TPW-induced) quadrant-localized signals contribute to the mean third-order sea-level trends.
  • 36
    • 0021644814 scopus 로고
    • See, for example, B. H. Hager, J. Geophys. Res. 89, 6003 (1984); M. A. Richard and B. H. Hager, ibid., p. 5987; M. Nakada and K. Lambeck, Geophys. J. Int. 96, 497 (1989); Y. Ricard and B. Wuming, ibid. 105, 561 (1991); J. X. Mitrovica, J. Geophys. Res. 101, 555 (1996); A. M. Forte and J. X. Mitrovica, Geophys. Res. Lett. 23, 1147 (1996).
    • (1984) J. Geophys. Res. , vol.89 , pp. 6003
    • Hager, B.H.1
  • 37
    • 0021644812 scopus 로고    scopus 로고
    • See, for example, B. H. Hager, J. Geophys. Res. 89, 6003 (1984); M. A. Richard and B. H. Hager, ibid., p. 5987; M. Nakada and K. Lambeck, Geophys. J. Int. 96, 497 (1989); Y. Ricard and B. Wuming, ibid. 105, 561 (1991); J. X. Mitrovica, J. Geophys. Res. 101, 555 (1996); A. M. Forte and J. X. Mitrovica, Geophys. Res. Lett. 23, 1147 (1996).
    • J. Geophys. Res. , pp. 5987
    • Richard, M.A.1    Hager, B.H.2
  • 38
    • 0024572022 scopus 로고
    • See, for example, B. H. Hager, J. Geophys. Res. 89, 6003 (1984); M. A. Richard and B. H. Hager, ibid., p. 5987; M. Nakada and K. Lambeck, Geophys. J. Int. 96, 497 (1989); Y. Ricard and B. Wuming, ibid. 105, 561 (1991); J. X. Mitrovica, J. Geophys. Res. 101, 555 (1996); A. M. Forte and J. X. Mitrovica, Geophys. Res. Lett. 23, 1147 (1996).
    • (1989) Geophys. J. Int. , vol.96 , pp. 497
    • Nakada, M.1    Lambeck, K.2
  • 39
    • 0025956118 scopus 로고
    • See, for example, B. H. Hager, J. Geophys. Res. 89, 6003 (1984); M. A. Richard and B. H. Hager, ibid., p. 5987; M. Nakada and K. Lambeck, Geophys. J. Int. 96, 497 (1989); Y. Ricard and B. Wuming, ibid. 105, 561 (1991); J. X. Mitrovica, J. Geophys. Res. 101, 555 (1996); A. M. Forte and J. X. Mitrovica, Geophys. Res. Lett. 23, 1147 (1996).
    • (1991) Geophys. J. Int. , vol.105 , pp. 561
    • Ricard, Y.1    Wuming, B.2
  • 40
    • 0029730323 scopus 로고    scopus 로고
    • See, for example, B. H. Hager, J. Geophys. Res. 89, 6003 (1984); M. A. Richard and B. H. Hager, ibid., p. 5987; M. Nakada and K. Lambeck, Geophys. J. Int. 96, 497 (1989); Y. Ricard and B. Wuming, ibid. 105, 561 (1991); J. X. Mitrovica, J. Geophys. Res. 101, 555 (1996); A. M. Forte and J. X. Mitrovica, Geophys. Res. Lett. 23, 1147 (1996).
    • (1996) J. Geophys. Res. , vol.101 , pp. 555
    • Mitrovica, J.X.1
  • 41
    • 0029666525 scopus 로고    scopus 로고
    • See, for example, B. H. Hager, J. Geophys. Res. 89, 6003 (1984); M. A. Richard and B. H. Hager, ibid., p. 5987; M. Nakada and K. Lambeck, Geophys. J. Int. 96, 497 (1989); Y. Ricard and B. Wuming, ibid. 105, 561 (1991); J. X. Mitrovica, J. Geophys. Res. 101, 555 (1996); A. M. Forte and J. X. Mitrovica, Geophys. Res. Lett. 23, 1147 (1996).
    • (1996) Geophys. Res. Lett. , vol.23 , pp. 1147
    • Forte, A.M.1    Mitrovica, J.X.2
  • 42
    • 15444352034 scopus 로고    scopus 로고
    • note
    • The sensitivity to LT apparent in Fig. 5A follows from the arguments in (27). Furthermore, we have found that the contribution of the M1 mode to the sea-level signal (27) is sensitive to variations in upper mantle viscosity, and less sensitive to variations in lower mantle viscosity, for this range of Earth models; this explains the results in Fig. 5, B and C.
  • 43
    • 0016534914 scopus 로고
    • T. H. Jordan, Rev. Geophys. 13, 1 (1975); S. P. Grand, J. Geophys. Res. 92, 14065 (1987); A. M. Forte, A. M. Dziewonski, R. J. O'Connell, Science 268, 386 (1995).
    • (1975) Rev. Geophys. , vol.13 , pp. 1
    • Jordan, T.H.1
  • 44
    • 0016534914 scopus 로고
    • T. H. Jordan, Rev. Geophys. 13, 1 (1975); S. P. Grand, J. Geophys. Res. 92, 14065 (1987); A. M. Forte, A. M. Dziewonski, R. J. O'Connell, Science 268, 386 (1995).
    • (1987) J. Geophys. Res. , vol.92 , pp. 14065
    • Grand, S.P.1
  • 45
    • 0028809028 scopus 로고
    • T. H. Jordan, Rev. Geophys. 13, 1 (1975); S. P. Grand, J. Geophys. Res. 92, 14065 (1987); A. M. Forte, A. M. Dziewonski, R. J. O'Connell, Science 268, 386 (1995).
    • (1995) Science , vol.268 , pp. 386
    • Forte, A.M.1    Dziewonski, A.M.2    O'Connell, R.J.3
  • 47
    • 15444354209 scopus 로고    scopus 로고
    • note
    • Our sea-level predictions include the direct gravitational attraction and the loading effect of sea-level variations (22). The spatial geometry of these effects depends on the distribution of oceans, and therefore the sea-level trends we predict are more complicated than the simple illustrations in Fig. 3 imply.
  • 48
    • 15444358365 scopus 로고    scopus 로고
    • note
    • We thank J. Wahr and two anonymous referees for their reviews of this report. We also thank D. Rowley for helpful comments. We are grateful for the ocean-continent geometry data provided by the PLATES Project of the Institute for Geophysics of the University of Texas at Austin. The work of J.X.M. was funded by Natural Sciences and Engineering Research Council of Canada and was supported by the Canadian Institute for Advanced Research (Earth Systems Evolution Program).


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.