메뉴 건너뛰기




Volumn 67, Issue 1, 1998, Pages 1-15

The asymptotic behavior of the empirical process based on a linear process under some contiguous alternatives

Author keywords

Contiguous alternatives; Empirical process; Gaussian process; Gaussian tests; Linear process

Indexed keywords


EID: 0032536668     PISSN: 03783758     EISSN: None     Source Type: Journal    
DOI: 10.1016/s0378-3758(97)00069-4     Document Type: Article
Times cited : (1)

References (11)
  • 4
    • 0010069098 scopus 로고
    • Convergence of distributions generated by stationary stochastic processes
    • Davydov, Y.A., 1968. Convergence of distributions generated by stationary stochastic processes. Theory Probab. Appl. 11, 390-406.
    • (1968) Theory Probab. Appl. , vol.11 , pp. 390-406
    • Davydov, Y.A.1
  • 5
    • 0001708259 scopus 로고
    • A note on empirical processes of strong-mixing processes
    • Deo, C.M., 1973. A note on empirical processes of strong-mixing processes. Ann. Probab. 1, 870-875.
    • (1973) Ann. Probab. , vol.1 , pp. 870-875
    • Deo, C.M.1
  • 6
    • 0001467992 scopus 로고
    • Weak convergence of the sample distribution function when parameters are estimated
    • Durbin, J., 1973. Weak convergence of the sample distribution function when parameters are estimated. Ann. Statist. 1, 279-290.
    • (1973) Ann. Statist. , vol.1 , pp. 279-290
    • Durbin, J.1
  • 7
    • 0000790842 scopus 로고
    • On the strong mixing property for linear sequences
    • Gorodettskii, V.V., 1977. On the strong mixing property for linear sequences. Theory. Probab. 22, 411-413.
    • (1977) Theory. Probab. , vol.22 , pp. 411-413
    • Gorodettskii, V.V.1
  • 8
    • 0003508192 scopus 로고
    • Ph.D. Thesis, Department of Mathematics, University of Maryland, College Park
    • Lee, S., 1991. Testing whether a time series is Gaussian. Ph.D. Thesis, Department of Mathematics, University of Maryland, College Park.
    • (1991) Testing Whether a Time Series is Gaussian
    • Lee, S.1
  • 11
    • 0001646148 scopus 로고
    • Central limit theorems for dependent random variables
    • Withers, C.S., 1981. Central limit theorems for dependent random variables. I. Zeit. Wahrsch, Verw, Gebiete. 57, 509-534.
    • (1981) I. Zeit. Wahrsch, Verw, Gebiete , vol.57 , pp. 509-534
    • Withers, C.S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.