메뉴 건너뛰기




Volumn 280, Issue 5365, 1998, Pages 921-924

Knowing where and getting there: A human navigation network

Author keywords

[No Author keywords available]

Indexed keywords

ARTICLE; CAUDATE NUCLEUS; COGNITION; FRONTAL CORTEX; HIPPOCAMPUS; HUMAN; HUMAN EXPERIMENT; NORMAL HUMAN; PARIETAL LOBE; POSITRON EMISSION TOMOGRAPHY; PRIORITY JOURNAL;

EID: 0032496356     PISSN: 00368075     EISSN: None     Source Type: Journal    
DOI: 10.1126/science.280.5365.921     Document Type: Article
Times cited : (1096)

References (45)
  • 7
    • 0027199196 scopus 로고
    • S. I. Wiener, J. Neurosci. 13, 3802 (1993); B. D. Devan, E. H. Goad, H. L. Petri, Neurobiol. Learn. Mem. 66, 305 (1996); M. Potegal, Spatial Abilities: Development and Physiological Foundations (Academic Press, New York, 1982).
    • (1993) J. Neurosci. , vol.13 , pp. 3802
    • Wiener, S.I.1
  • 8
    • 0030296888 scopus 로고    scopus 로고
    • S. I. Wiener, J. Neurosci. 13, 3802 (1993); B. D. Devan, E. H. Goad, H. L. Petri, Neurobiol. Learn. Mem. 66, 305 (1996); M. Potegal, Spatial Abilities: Development and Physiological Foundations (Academic Press, New York, 1982).
    • (1996) Neurobiol. Learn. Mem. , vol.66 , pp. 305
    • Devan, B.D.1    Goad, E.H.2    Petri, H.L.3
  • 10
    • 0002446120 scopus 로고
    • D. Deutsch and J. A. Deutsch, Eds. Academic Press, New York
    • M. Kinsbourne and F. Wood, in Short-Term Memory, D. Deutsch and J. A. Deutsch, Eds. (Academic Press, New York, 1975), pp. 257-291; E. Tulving, Elements of Episodic Memory (Clarendon, Oxford, 1983); F. Vargha-Khadem et al., Science 277, 376 (1997); B. Milner, Clin. Neurosurg. 19, 421 (1972).
    • (1975) Short-Term Memory , pp. 257-291
    • Kinsbourne, M.1    Wood, F.2
  • 11
    • 0003572529 scopus 로고
    • Clarendon, Oxford
    • M. Kinsbourne and F. Wood, in Short-Term Memory, D. Deutsch and J. A. Deutsch, Eds. (Academic Press, New York, 1975), pp. 257-291; E. Tulving, Elements of Episodic Memory (Clarendon, Oxford, 1983); F. Vargha-Khadem et al., Science 277, 376 (1997); B. Milner, Clin. Neurosurg. 19, 421 (1972).
    • (1983) Elements of Episodic Memory
    • Tulving, E.1
  • 12
    • 0030803727 scopus 로고    scopus 로고
    • M. Kinsbourne and F. Wood, in Short-Term Memory, D. Deutsch and J. A. Deutsch, Eds. (Academic Press, New York, 1975), pp. 257-291; E. Tulving, Elements of Episodic Memory (Clarendon, Oxford, 1983); F. Vargha-Khadem et al., Science 277, 376 (1997); B. Milner, Clin. Neurosurg. 19, 421 (1972).
    • (1997) Science , vol.277 , pp. 376
    • Vargha-Khadem, F.1
  • 13
    • 0015441617 scopus 로고
    • M. Kinsbourne and F. Wood, in Short-Term Memory, D. Deutsch and J. A. Deutsch, Eds. (Academic Press, New York, 1975), pp. 257-291; E. Tulving, Elements of Episodic Memory (Clarendon, Oxford, 1983); F. Vargha-Khadem et al., Science 277, 376 (1997); B. Milner, Clin. Neurosurg. 19, 421 (1972).
    • (1972) Clin. Neurosurg. , vol.19 , pp. 421
    • Milner, B.1
  • 14
    • 4344705249 scopus 로고
    • 15O, each 8 min apart. The integrated radioactivity counts that accumulated over the 90-s acquisition period, corrected for background, were used as an index of regional cerebral blood flow. Attenuation correction was computed with a transmission scan before emission scan acquisition. Images were reconstructed into 128 pixels by 128 pixels in 63 planes with an in-plane resolution of 6.5 mm. In addition, high-resolution magnetic resonance imaging (MRI) scans were obtained with a 2.0-7 Vision system (Siemens GmbH, Erlangen, Germany) using a T1-weighted 3D gradient echo sequence. The image dimensions were 256 voxels by 256 voxels by 256 voxels. The voxel size was 1 mm by 1 mm by 2 mm. Images were analyzed with Statistical Parametric Mapping (SPM'96, Wellcome Department of Cognitive Neurology, London, UK; www.fil.ion.ucl.ac.uk) executed in MATLAB (Mathworks, Sherborn, MA). All scans were automatically realigned to the first scan and then normalized using a nonlinear deformation [K. J. Friston et al., Hum. Brain Mapp. 2, 189 (1995)] into standard stereotactic space [J. Talairach and P. Tournoux, Co-Planar Stereotactic Atlas of the Human Brain (Thieme, Stuttgart, Germany, 1988)] using a template from the Montreal Neurological Institute [A. C. Evans et al., in Proceedings of the IEEE-Nuclear Science Symposium and Medical Imaging Conference, San Francisco, CA, 31 October to 6 November 1993, L. A. Klaisner, Ed. (IEEE Service Center, Piscataway, NJ, 1993), pp. 1813-1817]. The structural MRI scans were normalized into the same space to allow for the superimposition of PET activations onto an averaged structural image. Images were smoothed using an isotropic Gaussian kernel of 16 mm (full width at half maximum) to optimize the signal-to-noise ratio and to adjust for intersubject differences in gyral anatomy. Global variance between conditions was removed, using analysis of covariance (ANCOVA). For each pixel in stereotactic space, condition-specific adjusted rCBF values with an associated adjusted error variance were generated. Areas of significant change in brain activity were then determined, using appropriately weighted contrasts between the task-specific scans and the t statistic. The resulting sets of t values constituted the statistical parametric map (SPM). Significance levels were set at P < 0.001 (uncorrected).
    • (1995) Hum. Brain Mapp. , vol.2 , pp. 189
    • Friston, K.J.1
  • 15
    • 0003415335 scopus 로고
    • Thieme, Stuttgart, Germany
    • 15O, each 8 min apart. The integrated radioactivity counts that accumulated over the 90-s acquisition period, corrected for background, were used as an index of regional cerebral blood flow. Attenuation correction was computed with a transmission scan before emission scan acquisition. Images were reconstructed into 128 pixels by 128 pixels in 63 planes with an in-plane resolution of 6.5 mm. In addition, high-resolution magnetic resonance imaging (MRI) scans were obtained with a 2.0-7 Vision system (Siemens GmbH, Erlangen, Germany) using a T1-weighted 3D gradient echo sequence. The image dimensions were 256 voxels by 256 voxels by 256 voxels. The voxel size was 1 mm by 1 mm by 2 mm. Images were analyzed with Statistical Parametric Mapping (SPM'96, Wellcome Department of Cognitive Neurology, London, UK; www.fil.ion.ucl.ac.uk) executed in MATLAB (Mathworks, Sherborn, MA). All scans were automatically realigned to the first scan and then normalized using a nonlinear deformation [K. J. Friston et al., Hum. Brain Mapp. 2, 189 (1995)] into standard stereotactic space [J. Talairach and P. Tournoux, Co-Planar Stereotactic Atlas of the Human Brain (Thieme, Stuttgart, Germany, 1988)] using a template from the Montreal Neurological Institute [A. C. Evans et al., in Proceedings of the IEEE-Nuclear Science Symposium and Medical Imaging Conference, San Francisco, CA, 31 October to 6 November 1993, L. A. Klaisner, Ed. (IEEE Service Center, Piscataway, NJ, 1993), pp. 1813-1817]. The structural MRI scans were normalized into the same space to allow for the superimposition of PET activations onto an averaged structural image. Images were smoothed using an isotropic Gaussian kernel of 16 mm (full width at half maximum) to optimize the signal-to-noise ratio and to adjust for intersubject differences in gyral anatomy. Global variance between conditions was removed, using analysis of covariance (ANCOVA). For each pixel in stereotactic space, condition-specific adjusted rCBF values with an associated adjusted error variance were generated. Areas of significant change in brain activity were then determined, using appropriately weighted contrasts between the task-specific scans and the t statistic. The resulting sets of t values constituted the statistical parametric map (SPM). Significance levels were set at P < 0.001 (uncorrected).
    • (1988) Co-Planar Stereotactic Atlas of the Human Brain
    • Talairach, J.1    Tournoux, P.2
  • 16
    • 0001179739 scopus 로고
    • San Francisco, CA, 31 October to 6 November 1993, L. A. Klaisner, Ed. IEEE Service Center, Piscataway, NJ
    • 15O, each 8 min apart. The integrated radioactivity counts that accumulated over the 90-s acquisition period, corrected for background, were used as an index of regional cerebral blood flow. Attenuation correction was computed with a transmission scan before emission scan acquisition. Images were reconstructed into 128 pixels by 128 pixels in 63 planes with an in-plane resolution of 6.5 mm. In addition, high-resolution magnetic resonance imaging (MRI) scans were obtained with a 2.0-7 Vision system (Siemens GmbH, Erlangen, Germany) using a T1-weighted 3D gradient echo sequence. The image dimensions were 256 voxels by 256 voxels by 256 voxels. The voxel size was 1 mm by 1 mm by 2 mm. Images were analyzed with Statistical Parametric Mapping (SPM'96, Wellcome Department of Cognitive Neurology, London, UK; www.fil.ion.ucl.ac.uk) executed in MATLAB (Mathworks, Sherborn, MA). All scans were automatically realigned to the first scan and then normalized using a nonlinear deformation [K. J. Friston et al., Hum. Brain Mapp. 2, 189 (1995)] into standard stereotactic space [J. Talairach and P. Tournoux, Co-Planar Stereotactic Atlas of the Human Brain (Thieme, Stuttgart, Germany, 1988)] using a template from the Montreal Neurological Institute [A. C. Evans et al., in Proceedings of the IEEE-Nuclear Science Symposium and Medical Imaging Conference, San Francisco, CA, 31 October to 6 November 1993, L. A. Klaisner, Ed. (IEEE Service Center, Piscataway, NJ, 1993), pp. 1813-1817]. The structural MRI scans were normalized into the same space to allow for the superimposition of PET activations onto an averaged structural image. Images were smoothed using an isotropic Gaussian kernel of 16 mm (full width at half maximum) to optimize the signal-to-noise ratio and to adjust for intersubject differences in gyral anatomy. Global variance between conditions was removed, using analysis of covariance (ANCOVA). For each pixel in stereotactic space, condition-specific adjusted rCBF values with an associated adjusted error variance were generated. Areas of significant change in brain activity were then determined, using appropriately weighted contrasts between the task-specific scans and the t statistic. The resulting sets of t values constituted the statistical parametric map (SPM). Significance levels were set at P < 0.001 (uncorrected).
    • (1993) Proceedings of the IEEE-Nuclear Science Symposium and Medical Imaging Conference , pp. 1813-1817
    • Evans, A.C.1
  • 17
    • 2642654770 scopus 로고    scopus 로고
    • note
    • A commercially available computer game (Duke Nukem 3D, 3D Realms Entertainment, Apogee Software Ltd., Garland, TX) was used to present the virtual reality town on a 120-MHz Pentium-based personal computer, showing a color, 3D, fully textured first-person view. The town was created using the editor provided (BUILD, Ken Silverman, 3D Realms Entertainment). The game's record and playback functions were used to store subjects' actions and replay them for subsequent analysis. The town had four streets and contained shops, bars, a cinema, church, bank, train station, and video games arcade (Fig. 1A). Subjects could enter into and navigate through the buildings, as each room had at least two entrances. The town contained small screens on the walls at various locations. Approaching a screen and switching it on caused it to display a view of another part of the town. Subjects controlled their movement within the environment by using a keypad with backward, forward, left turn, and right turn buttons. A firth button served to activate screens. Before scanning acquisition, subjects spent up to 60 min exploring the environment until they felt that they had learned the spatial layout of streets and building interiors. A trail of arrows on the floor was present during exploration and in all conditions, but was only relevant in the arrows condition. Subjects were scanned under four conditions. (i) nav1: subjects switch on a screen and navigate through the town to the destination displayed. When the destination is reached, the subject activates the screen found there, which displays the next destination, and so on; (ii) nav2: identical to nav1, except that some doors have been closed, and a barrier has been moved to block a different street; (iii) arrows: subjects move through the town following a trail of arrows on the floor. Subjects activated the screens encountered during the task, but the views of the town displayed had no relevance to their task; (iv) scenes: static scenes from the town are presented every 2 s, subjects respond according to whether there is a screen in the scene or not.
  • 18
    • 2642668990 scopus 로고    scopus 로고
    • note
    • d|〉 as a measure of accuracy of heading. Similar analysis was not applied to the nav2 detour condition, because subjects did not know beforehand which doors would be closed or where the barriers would be, and so could not be expected to plan an optimal route. Theoretically, accuracy scores may vary from 0 (always moving directly away from the current destination), through 90° (moving randomly) to 180° (always moving directly toward the current destination). In practice, an accuracy of 160° is hard to exceed because of the cluttered nature of the environment (the accuracy of one very well-practiced author. N.B., in the three trials varied between 144.3° and 157.4°). This measure agrees with our subjective assessment of trials, was independent of the speed of navigation, and is consistent with models of how the hippocampus directs navigation in rodents (17).
  • 20
    • 0029902352 scopus 로고    scopus 로고
    • G. K. Aguirre, J. A. Detre, D. C. Alsop, M. D'Esposito, Cereb. Cortex 6, 823 (1996); E. A. Maguire, R. S. J. Frackowiak, C. D. Frith, Proc. R. Soc. London Ser. B 263, 1745 (1996); O. Ghaem et al., Neuroreport 8, 739 (1997); E. A. Maguire, R. S. J. Frackowiak, C. D. Frith. J. Neurosci. 17, 7103 (1997); G. K. Aguirre and M. D'Esposito, ibid., p. 2512; E. A. Maguire, C. D. Frith, N. Burgess, J. G. Donnett, J. O'Keefe, J. Cogn. Neurosci. 10, 61 (1998).
    • (1996) Cereb. Cortex , vol.6 , pp. 823
    • Aguirre, G.K.1    Detre, J.A.2    Alsop, D.C.3    D'Esposito, M.4
  • 21
    • 0030476829 scopus 로고    scopus 로고
    • G. K. Aguirre, J. A. Detre, D. C. Alsop, M. D'Esposito, Cereb. Cortex 6, 823 (1996); E. A. Maguire, R. S. J. Frackowiak, C. D. Frith, Proc. R. Soc. London Ser. B 263, 1745 (1996); O. Ghaem et al., Neuroreport 8, 739 (1997); E. A. Maguire, R. S. J. Frackowiak, C. D. Frith. J. Neurosci. 17, 7103 (1997); G. K. Aguirre and M. D'Esposito, ibid., p. 2512; E. A. Maguire, C. D. Frith, N. Burgess, J. G. Donnett, J. O'Keefe, J. Cogn. Neurosci. 10, 61 (1998).
    • (1996) Proc. R. Soc. London Ser. B , vol.263 , pp. 1745
    • Maguire, E.A.1    Frackowiak, R.S.J.2    Frith, C.D.3
  • 22
    • 0030888764 scopus 로고    scopus 로고
    • G. K. Aguirre, J. A. Detre, D. C. Alsop, M. D'Esposito, Cereb. Cortex 6, 823 (1996); E. A. Maguire, R. S. J. Frackowiak, C. D. Frith, Proc. R. Soc. London Ser. B 263, 1745 (1996); O. Ghaem et al., Neuroreport 8, 739 (1997); E. A. Maguire, R. S. J. Frackowiak, C. D. Frith. J. Neurosci. 17, 7103 (1997); G. K. Aguirre and M. D'Esposito, ibid., p. 2512; E. A. Maguire, C. D. Frith, N. Burgess, J. G. Donnett, J. O'Keefe, J. Cogn. Neurosci. 10, 61 (1998).
    • (1997) Neuroreport , vol.8 , pp. 739
    • Ghaem, O.1
  • 23
    • 0030824005 scopus 로고    scopus 로고
    • G. K. Aguirre, J. A. Detre, D. C. Alsop, M. D'Esposito, Cereb. Cortex 6, 823 (1996); E. A. Maguire, R. S. J. Frackowiak, C. D. Frith, Proc. R. Soc. London Ser. B 263, 1745 (1996); O. Ghaem et al., Neuroreport 8, 739 (1997); E. A. Maguire, R. S. J. Frackowiak, C. D. Frith. J. Neurosci. 17, 7103 (1997); G. K. Aguirre and M. D'Esposito, ibid., p. 2512; E. A. Maguire, C. D. Frith, N. Burgess, J. G. Donnett, J. O'Keefe, J. Cogn. Neurosci. 10, 61 (1998).
    • (1997) J. Neurosci. , vol.17 , pp. 7103
    • Maguire, E.A.1    Frackowiak, R.S.J.2    Frith, C.D.3
  • 24
    • 0029902352 scopus 로고    scopus 로고
    • G. K. Aguirre, J. A. Detre, D. C. Alsop, M. D'Esposito, Cereb. Cortex 6, 823 (1996); E. A. Maguire, R. S. J. Frackowiak, C. D. Frith, Proc. R. Soc. London Ser. B 263, 1745 (1996); O. Ghaem et al., Neuroreport 8, 739 (1997); E. A. Maguire, R. S. J. Frackowiak, C. D. Frith. J. Neurosci. 17, 7103 (1997); G. K. Aguirre and M. D'Esposito, ibid., p. 2512; E. A. Maguire, C. D. Frith, N. Burgess, J. G. Donnett, J. O'Keefe, J. Cogn. Neurosci. 10, 61 (1998).
    • J. Neurosci. , pp. 2512
    • Aguirre, G.K.1    D'Esposito, M.2
  • 25
    • 0031931306 scopus 로고    scopus 로고
    • G. K. Aguirre, J. A. Detre, D. C. Alsop, M. D'Esposito, Cereb. Cortex 6, 823 (1996); E. A. Maguire, R. S. J. Frackowiak, C. D. Frith, Proc. R. Soc. London Ser. B 263, 1745 (1996); O. Ghaem et al., Neuroreport 8, 739 (1997); E. A. Maguire, R. S. J. Frackowiak, C. D. Frith. J. Neurosci. 17, 7103 (1997); G. K. Aguirre and M. D'Esposito, ibid., p. 2512; E. A. Maguire, C. D. Frith, N. Burgess, J. G. Donnett, J. O'Keefe, J. Cogn. Neurosci. 10, 61 (1998).
    • (1998) J. Cogn. Neurosci. , vol.10 , pp. 61
    • Maguire, E.A.1    Frith, C.D.2    Burgess, N.3    Donnett, J.G.4    O'Keefe, J.5
  • 28
    • 0003831074 scopus 로고
    • Tavistock, London
    • A. R. Luria, Higher Cortical Functions in Man (Tavistock, London, 1966); B. Milner, Arch. Neurol. 9, 90 (1963); T. Shallice, Philos. Trans. R. Soc. London Ser. B 298, 199 (1982).
    • (1966) Higher Cortical Functions in Man
    • Luria, A.R.1
  • 29
    • 84887059933 scopus 로고
    • A. R. Luria, Higher Cortical Functions in Man (Tavistock, London, 1966); B. Milner, Arch. Neurol. 9, 90 (1963); T. Shallice, Philos. Trans. R. Soc. London Ser. B 298, 199 (1982).
    • (1963) Arch. Neurol. , vol.9 , pp. 90
    • Milner, B.1
  • 30
    • 0020490787 scopus 로고
    • A. R. Luria, Higher Cortical Functions in Man (Tavistock, London, 1966); B. Milner, Arch. Neurol. 9, 90 (1963); T. Shallice, Philos. Trans. R. Soc. London Ser. B 298, 199 (1982).
    • (1982) Philos. Trans. R. Soc. London Ser. B , vol.298 , pp. 199
    • Shallice, T.1
  • 31
    • 0020056982 scopus 로고
    • A. E. Kelly and V. B. Domesick, Neuroscience 7, 615 (1982); L. W. Swanson and C. Kohler, J. Neurosci. 6, 3010 (1986); A. J. McGeorge and R. L. M. Faull, Neuroscience 29, 503 (1989).
    • (1982) Neuroscience , vol.7 , pp. 615
    • Kelly, A.E.1    Domesick, V.B.2
  • 32
    • 0022895020 scopus 로고
    • A. E. Kelly and V. B. Domesick, Neuroscience 7, 615 (1982); L. W. Swanson and C. Kohler, J. Neurosci. 6, 3010 (1986); A. J. McGeorge and R. L. M. Faull, Neuroscience 29, 503 (1989).
    • (1986) J. Neurosci. , vol.6 , pp. 3010
    • Swanson, L.W.1    Kohler, C.2
  • 33
    • 0024336026 scopus 로고
    • A. E. Kelly and V. B. Domesick, Neuroscience 7, 615 (1982); L. W. Swanson and C. Kohler, J. Neurosci. 6, 3010 (1986); A. J. McGeorge and R. L. M. Faull, Neuroscience 29, 503 (1989).
    • (1989) Neuroscience , vol.29 , pp. 503
    • McGeorge, A.J.1    Faull, R.L.M.2
  • 35
    • 0019778515 scopus 로고
    • E. A. Maguire, T. Burke, J. Phillips, H. Staunton, Neuropsychologia 34, 993 (1996); M. L. Smith and B. Milner, ibid. 19, 781 (1981).
    • (1981) Neuropsychologia , vol.19 , pp. 781
    • Smith, M.L.1    Milner, B.2
  • 37
    • 0002980750 scopus 로고
    • J. Paillard, Ed. Oxford Univ. Press, Oxford
    • J. O'Keefe, Brain and Space, J. Paillard, Ed. (Oxford Univ. Press, Oxford, 1991), pp. 273-295; N. Burgess and J. O'Keefe, Hippocampus 6, 749 (1996).
    • (1991) Brain and Space , pp. 273-295
    • O'Keefe, J.1
  • 38
    • 0030499770 scopus 로고    scopus 로고
    • J. O'Keefe, Brain and Space, J. Paillard, Ed. (Oxford Univ. Press, Oxford, 1991), pp. 273-295; N. Burgess and J. O'Keefe, Hippocampus 6, 749 (1996).
    • (1996) Hippocampus , vol.6 , pp. 749
    • Burgess, N.1    O'Keefe, J.2
  • 40
    • 0003509280 scopus 로고
    • Oxford Univ. Press, Oxford
    • R. E. Passingham, in Neural and Behavioral Approaches to Higher Brain Functions, S. Wise, Ed. (Wiley, New York, 1987); R. E. Passingham, The Frontal Lobes and Voluntary Action (Oxford Univ. Press, Oxford, 1995).
    • (1995) The Frontal Lobes and Voluntary Action
    • Passingham, R.E.1
  • 45
    • 2642630229 scopus 로고    scopus 로고
    • E.A.M., R.S.J.F., and C.D.F. are supported by the Wellcome Trust, J.O'K. and J.G.D. by the Medical Research Council, and N.B. by the Royal Society. We thank K. Friston, C. Price, and C. Buchel for helpful comments
    • E.A.M., R.S.J.F., and C.D.F. are supported by the Wellcome Trust, J.O'K. and J.G.D. by the Medical Research Council, and N.B. by the Royal Society. We thank K. Friston, C. Price, and C. Buchel for helpful comments.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.