-
1
-
-
7144267419
-
-
Lithosphere is defined as the strong outer shell of a terrestrial planet that transports heat to the surface by conduction
-
Lithosphere is defined as the strong outer shell of a terrestrial planet that transports heat to the surface by conduction.
-
-
-
-
2
-
-
0002384824
-
-
S. W. Bougher, D. M. Hunten, R. J. Phillips, Eds. Univ. of Arizona Press, Tucson
-
S. E. Smrekar, W. S. Kiefer, E. R. Stofan, in Venus II, S. W. Bougher, D. M. Hunten, R. J. Phillips, Eds. (Univ. of Arizona Press, Tucson, 1997), pp. 845-878.
-
(1997)
Venus II
, pp. 845-878
-
-
Smrekar, S.E.1
Kiefer, W.S.2
Stofan, E.R.3
-
4
-
-
7144230891
-
-
V. L. Hansen, J. J. Willis, W. B. Banerdt, in (2), pp. 797-844
-
V. L. Hansen, J. J. Willis, W. B. Banerdt, in (2), pp. 797-844.
-
-
-
-
5
-
-
0024483175
-
-
E. R. Stofan et al., Geol. Soc. Am. Bull. 101, 143 (1989); D. A. Senske, G. G. Schaber, E. R. Stofan, J. Geophys. Res. 97, 13395 (1992).
-
(1989)
Geol. Soc. Am. Bull.
, vol.101
, pp. 143
-
-
Stofan, E.R.1
-
6
-
-
0027040996
-
-
E. R. Stofan et al., Geol. Soc. Am. Bull. 101, 143 (1989); D. A. Senske, G. G. Schaber, E. R. Stofan, J. Geophys. Res. 97, 13395 (1992).
-
(1992)
J. Geophys. Res.
, vol.97
, pp. 13395
-
-
Senske, D.A.1
Schaber, G.G.2
Stofan, E.R.3
-
9
-
-
0001992155
-
-
R. E. Grimm and R. J. Phillips, J. Geophys. Res. 97, 16035 (1992); S. E. Smrekar, Icarus 112, 2 (1994).
-
(1994)
Icarus
, vol.112
, pp. 2
-
-
Smrekar, S.E.1
-
10
-
-
0028163707
-
-
N. Namiki and S. C. Solomon, Science 265, 929 (1994); M. Price and J. Suppe, Nature 372, 756 (1994); R. J. Phillips and N. R. Izenberg, Geophys. Res. Lett. 22, 1517 (1995); M. H. Price, G. Watson, J. Suppe, C. Brankman, J. Geophys. Res. 101, 4657 (1996).
-
(1994)
Science
, vol.265
, pp. 929
-
-
Namiki, N.1
Solomon, S.C.2
-
11
-
-
0028669863
-
-
N. Namiki and S. C. Solomon, Science 265, 929 (1994); M. Price and J. Suppe, Nature 372, 756 (1994); R. J. Phillips and N. R. Izenberg, Geophys. Res. Lett. 22, 1517 (1995); M. H. Price, G. Watson, J. Suppe, C. Brankman, J. Geophys. Res. 101, 4657 (1996).
-
(1994)
Nature
, vol.372
, pp. 756
-
-
Price, M.1
Suppe, J.2
-
12
-
-
0029487987
-
-
N. Namiki and S. C. Solomon, Science 265, 929 (1994); M. Price and J. Suppe, Nature 372, 756 (1994); R. J. Phillips and N. R. Izenberg, Geophys. Res. Lett. 22, 1517 (1995); M. H. Price, G. Watson, J. Suppe, C. Brankman, J. Geophys. Res. 101, 4657 (1996).
-
(1995)
Geophys. Res. Lett.
, vol.22
, pp. 1517
-
-
Phillips, R.J.1
Izenberg, N.R.2
-
13
-
-
0029771994
-
-
N. Namiki and S. C. Solomon, Science 265, 929 (1994); M. Price and J. Suppe, Nature 372, 756 (1994); R. J. Phillips and N. R. Izenberg, Geophys. Res. Lett. 22, 1517 (1995); M. H. Price, G. Watson, J. Suppe, C. Brankman, J. Geophys. Res. 101, 4657 (1996).
-
(1996)
J. Geophys. Res.
, vol.101
, pp. 4657
-
-
Price, M.H.1
Watson, G.2
Suppe, J.3
Brankman, C.4
-
15
-
-
0002976318
-
-
R. E. Grimm, Icarus 112, 89 (1994); M. Simons, S. C. Solomon, B. H. Hager, Geophys. J. Int. 131, 24 (1997).
-
(1994)
Icarus
, vol.112
, pp. 89
-
-
Grimm, R.E.1
-
16
-
-
0031473691
-
-
R. E. Grimm, Icarus 112, 89 (1994); M. Simons, S. C. Solomon, B. H. Hager, Geophys. J. Int. 131, 24 (1997).
-
(1997)
Geophys. J. Int.
, vol.131
, pp. 24
-
-
Simons, M.1
Solomon, S.C.2
Hager, B.H.3
-
17
-
-
7144246615
-
-
R. E. Grimm and P. C. Hess, in (2), pp.1205-1244
-
R. E. Grimm and P. C. Hess, in (2), pp.1205-1244.
-
-
-
-
18
-
-
7144265357
-
-
A. T. Basilevsky, J. W. Head, G. G. Schaber, R. G. Strom, in (2), pp.1047-1084
-
A. T. Basilevsky, J. W. Head, G. G. Schaber, R. G. Strom, in (2), pp.1047-1084.
-
-
-
-
20
-
-
7144244826
-
-
in press
-
_, ibid., in press.
-
Icarus
-
-
-
25
-
-
7144265356
-
-
D. L. Bindschadler A. DeCharon, K. K. Beratan, S. E. Smrekar, J. W. Head, ibid., p. 13563.
-
J. Geophys. Res.
, pp. 13563
-
-
Bindschadler, D.L.1
DeCharon, A.2
Beratan, K.K.3
Smrekar, S.E.4
Head, J.W.5
-
32
-
-
7144265355
-
-
The type ribbons are located in southeastern Fortuna Tessera (14)
-
The type ribbons are located in southeastern Fortuna Tessera (14).
-
-
-
-
36
-
-
7144238417
-
-
W. B. McKinnon, K. J. Zahnle, B. I. Ivanov, H. J. Melosh, in (2) pp. 969-1014. Age estimates of a specific geologic unit are obtained by scaling its crater density to the global mean crater density
-
W. B. McKinnon, K. J. Zahnle, B. I. Ivanov, H. J. Melosh, in (2) pp. 969-1014. Age estimates of a specific geologic unit are obtained by scaling its crater density to the global mean crater density.
-
-
-
-
37
-
-
0027846099
-
-
Only craters with diameters ≥32 km are counted to avoid a potential observational bias [M. A. Ivanov and A. T. Basilevsky, Geophys. Res. Lett. 20, 2579 (1993)]. This estimate averages, across all of the tesserae, the oldest surviving crater on each tessera (the "retention age"). This age is less than the average formation age of the tesserae themselves. The errors used here and elsewhere are 1σ values based on counting statistics and do not take into account the uncertainty in the 750 Ma mean age value (30).
-
(1993)
Geophys. Res. Lett.
, vol.20
, pp. 2579
-
-
Ivanov, M.A.1
Basilevsky, A.T.2
-
39
-
-
7144238415
-
-
K. L. Tanaka, D. A. Senske, M. Price, R. L. Kirk, in (2), pp. 667-694
-
K. L. Tanaka, D. A. Senske, M. Price, R. L. Kirk, in (2), pp. 667-694.
-
-
-
-
41
-
-
0000206705
-
-
W. R. Peltier, Ed. Gordon & Breach, New York
-
G. T. Jarvis and W. R. Pettier, in Mantle Convection: Plate Tectonics and Global Dynamics, W. R. Peltier, Ed. (Gordon & Breach, New York, 1989) pp. 479-593.
-
(1989)
Mantle Convection: Plate Tectonics and Global Dynamics
, pp. 479-593
-
-
Jarvis, G.T.1
Pettier, W.R.2
-
42
-
-
7144238416
-
-
J. W. Head, Lunar Planet. Sci. XXVI, 573 (1995). Models that progressively flood crustal plateaus reveal characteristics typical of large tessera inliers, including arcuate marginal traces.
-
(1995)
Lunar Planet. Sci.
, vol.26
, pp. 573
-
-
Head, J.W.1
-
43
-
-
7144225039
-
-
Coronae on Venus are ". . . any circular to elongate structure defined primarily by an annulus of concentric fractures and ridges." They occur most often in association with chasmata (rifts) [E. R. Stofan, V. E. Hamilton, D. M. Janes, S. E. Smrekar, in (2), pp. 931-965]
-
Coronae on Venus are ". . . any circular to elongate structure defined primarily by an annulus of concentric fractures and ridges." They occur most often in association with chasmata (rifts) [E. R. Stofan, V. E. Hamilton, D. M. Janes, S. E. Smrekar, in (2), pp. 931-965].
-
-
-
-
44
-
-
0029157876
-
-
G. Schubert, V. S. Solomatov, P. J. Tackley, D. L. Turcotte, in (2), pp.1245-1288
-
V. S. Solomatov, Phys. Fluids 7, 266 (1995); G. Schubert, V. S. Solomatov, P. J. Tackley, D. L. Turcotte, in (2), pp.1245-1288; L.-N. Moresi and V. S. Solomatov, Phys. Fluids 7, 2154 (1995); V. S. Solomatov and L.-N. Moresi, J. Geophys. Res. 101, 4737 (1996).
-
(1995)
Phys. Fluids
, vol.7
, pp. 266
-
-
Solomatov, V.S.1
-
45
-
-
0029527772
-
-
V. S. Solomatov, Phys. Fluids 7, 266 (1995); G. Schubert, V. S. Solomatov, P. J. Tackley, D. L. Turcotte, in (2), pp.1245-1288; L.-N. Moresi and V. S. Solomatov, Phys. Fluids 7, 2154 (1995); V. S. Solomatov and L.-N. Moresi, J. Geophys. Res. 101, 4737 (1996).
-
(1995)
Phys. Fluids
, vol.7
, pp. 2154
-
-
Moresi, L.-N.1
Solomatov, V.S.2
-
46
-
-
0029774917
-
-
V. S. Solomatov, Phys. Fluids 7, 266 (1995); G. Schubert, V. S. Solomatov, P. J. Tackley, D. L. Turcotte, in (2), pp.1245-1288; L.-N. Moresi and V. S. Solomatov, Phys. Fluids 7, 2154 (1995); V. S. Solomatov and L.-N. Moresi, J. Geophys. Res. 101, 4737 (1996).
-
(1996)
J. Geophys. Res.
, vol.101
, pp. 4737
-
-
Solomatov, V.S.1
Moresi, L.-N.2
-
49
-
-
6144265041
-
-
G. G. Schaber et al., ibid. 97, 13257 (1992); R. G. Strom, G. G. Schaber, D. D. Dawson, ibid. 99, 10899 (1994).
-
(1992)
J. Geophys. Res.
, vol.97
, pp. 13257
-
-
Schaber, G.G.1
-
50
-
-
0039986172
-
-
G. G. Schaber et al., ibid. 97, 13257 (1992); R. G. Strom, G. G. Schaber, D. D. Dawson, ibid. 99, 10899 (1994).
-
(1994)
J. Geophys. Res.
, vol.99
, pp. 10899
-
-
Strom, R.G.1
Schaber, G.G.2
Dawson, D.D.3
-
53
-
-
0029729213
-
-
2 in the Venus atmosphere will drive the surface temperature to 1000 K [M. A. Bullock and D. H. Grinspoon, J. Geophys. Res. 101, 7521 (1996)].
-
(1996)
J. Geophys. Res.
, vol.101
, pp. 7521
-
-
Bullock, M.A.1
Grinspoon, D.H.2
-
54
-
-
0012030686
-
-
D. M. Hunten, L. Colin, T. M. Donahue, Eds. Univ. of Arizona Press, Tucson
-
R. J. Phillips and M. C. Malin, in Venus, D. M. Hunten, L. Colin, T. M. Donahue, Eds. (Univ. of Arizona Press, Tucson, 1983), pp. 159-214.
-
(1983)
Venus
, pp. 159-214
-
-
Phillips, R.J.1
Malin, M.C.2
-
56
-
-
7144221077
-
-
note
-
β. The value of β is different for thin-lid and thick-lid convection (and α ≡ 0 for thin-lid convection). Two coupled ordinary differential equations are integrated in time to obtain upper mantle (at base of lithospheric thermal boundary layer) and outermost core temperatures. Core energy balance includes the effects of solid inner core formation. Heat sources in the mantle are fractionated into a crust with time, and the heat flux out of the convecting mantle depends linearly on Nu.
-
-
-
-
57
-
-
7144237394
-
-
The boundary layer bottom temperature is the outermost core temperature, and the top temperature is obtained by adiabatic extrapolation of the upper mantle solution temperature
-
The boundary layer bottom temperature is the outermost core temperature, and the top temperature is obtained by adiabatic extrapolation of the upper mantle solution temperature.
-
-
-
-
58
-
-
0021360880
-
-
D. McKenzie, J. Petrol. 25, 713 (1984); D. McKenzie and M. J. Bickle, ibid. 29, 625 (1988).
-
(1984)
J. Petrol.
, vol.25
, pp. 713
-
-
McKenzie, D.1
-
60
-
-
7144222133
-
-
The heat flow estimate in Table 1 is obtained from flexural modeling of a volcanic rise with a correction to the background value [R. J. Phillips et al., in (2), pp. 1163-1204]
-
The heat flow estimate in Table 1 is obtained from flexural modeling of a volcanic rise with a correction to the background value [R. J. Phillips et al., in (2), pp. 1163-1204].
-
-
-
-
61
-
-
7144223934
-
-
-1, β (thin lid) = 0.33, and β (thick lid) = 0.30
-
-1, β (thin lid) = 0.33, and β (thick lid) = 0.30.
-
-
-
-
62
-
-
7144220019
-
-
If these calculations are carried forward in time, partial melting reaches a peak and then starts to slowly decrease due to the loss of heat-producing radiogenic parent isotopes in the mantle. This is also the reason for the slope prior to the switch
-
If these calculations are carried forward in time, partial melting reaches a peak and then starts to slowly decrease due to the loss of heat-producing radiogenic parent isotopes in the mantle. This is also the reason for the slope prior to the switch.
-
-
-
-
63
-
-
0025224650
-
-
2, 1 km average height above its surroundings) using an isostatic assumption. This yields the number of Tellus-sized crustal plateaus generated by plumes over the interval τ.
-
(1990)
J. Geophys. Res.
, vol.95
, pp. 6715
-
-
Sleep, N.H.1
-
64
-
-
7144238413
-
-
-2 during the interval 1.7 Ga to 0.7 Ga
-
-2 during the interval 1.7 Ga to 0.7 Ga.
-
-
-
-
65
-
-
0022265672
-
-
R. H. Sibson, J. Struct. Geol. 7, 751 (1985); M. P. Golombek and W. B. Banerdt, Icarus 68, 252 (1986).
-
(1985)
J. Struct. Geol.
, vol.7
, pp. 751
-
-
Sibson, R.H.1
-
66
-
-
0001741928
-
-
R. H. Sibson, J. Struct. Geol. 7, 751 (1985); M. P. Golombek and W. B. Banerdt, Icarus 68, 252 (1986).
-
(1986)
Icarus
, vol.68
, pp. 252
-
-
Golombek, M.P.1
Banerdt, W.B.2
-
68
-
-
0000330686
-
-
This result is obtained by constructing a yield strength envelope [W. F. Brace and D. L. Kohlstedt, J. Geophys. Res. 85, 6248 (1980) ] using a dry diabase flow law [S. J. Mackwell, M. E. Zimmerman, D. L. Kohlstedt, D. S. Scherber, in Proc. of the 35th U.S. Symposium on Rock Mechanics, J. J. K. Daemen and R. A. Shultz, Eds. (A. A. Balkema, Rotterdam, 1995), pp. 207-214] and 10% strain in 0.1 My. The temperature profile used was for a cooling half-space model with a surface temperature of 740 or 1000 K and an initial temperature determined by mixing melt temperatures from the CMM with crustal temperatures from the CTM calculated with the appropriate surface temperature.
-
(1980)
J. Geophys. Res.
, vol.85
, pp. 6248
-
-
Brace, W.F.1
Kohlstedt, D.L.2
-
69
-
-
84991892594
-
-
J. J. K. Daemen and R. A. Shultz, Eds. A. A. Balkema, Rotterdam
-
This result is obtained by constructing a yield strength envelope [W. F. Brace and D. L. Kohlstedt, J. Geophys. Res. 85, 6248 (1980) ] using a dry diabase flow law [S. J. Mackwell, M. E. Zimmerman, D. L. Kohlstedt, D. S. Scherber, in Proc. of the 35th U.S. Symposium on Rock Mechanics, J. J. K. Daemen and R. A. Shultz, Eds. (A. A. Balkema, Rotterdam, 1995), pp. 207-214] and 10% strain in 0.1 My. The temperature profile used was for a cooling half-space model with a surface temperature of 740 or 1000 K and an initial temperature determined by mixing melt temperatures from the CMM with crustal temperatures from the CTM calculated with the appropriate surface temperature.
-
(1995)
Proc. of the 35th U.S. Symposium on Rock Mechanics
, pp. 207-214
-
-
Mackwell, S.J.1
Zimmerman, M.E.2
Kohlstedt, D.L.3
Scherber, D.S.4
-
70
-
-
0004236921
-
-
Chapman & Hall, New York
-
J. C. Jaeger and N. G. W. Cook, Fundamentals of Rock Mechanics (Chapman & Hall, New York, 1979). The transition depth for tensile to shear failure is dependent on the choice of tensile yield stress. We used a value of 10 MPa, which is within the range estimated for intact basalts [R. A. Schultz, J. Geophys. Res. 95, 10883 (1993)].
-
(1979)
Fundamentals of Rock Mechanics
-
-
Jaeger, J.C.1
Cook, N.G.W.2
-
71
-
-
0344329312
-
-
J. C. Jaeger and N. G. W. Cook, Fundamentals of Rock Mechanics (Chapman & Hall, New York, 1979). The transition depth for tensile to shear failure is dependent on the choice of tensile yield stress. We used a value of 10 MPa, which is within the range estimated for intact basalts [R. A. Schultz, J. Geophys. Res. 95, 10883 (1993)].
-
(1993)
J. Geophys. Res.
, vol.95
, pp. 10883
-
-
Schultz, R.A.1
-
73
-
-
7144237393
-
-
This work was supported by NASA's Planetary Geology and Geophysics programs under Grants NAGW-3024 to Washington University and NAGW-2915 to Southern Methodist University. D. Brown and S. Hauck provided helpful reviews of earlier drafts of this manuscript. We thank M. Zuber and two additional reviewers for comments. J. Goodge provided a review of the revised manuscript
-
This work was supported by NASA's Planetary Geology and Geophysics programs under Grants NAGW-3024 to Washington University and NAGW-2915 to Southern Methodist University. D. Brown and S. Hauck provided helpful reviews of earlier drafts of this manuscript. We thank M. Zuber and two additional reviewers for comments. J. Goodge provided a review of the revised manuscript.
-
-
-
|