-
1
-
-
2642649072
-
-
Breslow, R., Ed.; W. A. Benjamin, Inc.: Menlo Park, CA, Chapter 10 and references therein
-
(a) House, O. H. In Modern Synthetic Reactions; Breslow, R., Ed.; W. A. Benjamin, Inc.: Menlo Park, CA, 1972: Chapter 10 and references therein.
-
(1972)
Modern Synthetic Reactions
-
-
House, O.H.1
-
2
-
-
0003417469
-
-
Trost, B. M., Ed.; Pergamon Press: Oxford, Chapter 1.5, and references therein
-
(b) Heathcock, C. H. In Comprehensive Organic Synthesis; Trost, B. M., Ed.; Pergamon Press: Oxford, 1991; Vol. 2, Chapter 1.5, and references therein.
-
(1991)
Comprehensive Organic Synthesis
, vol.2
-
-
Heathcock, C.H.1
-
3
-
-
2642645793
-
-
Scheffold, R., Ed.; VHCA and VCH: Basel, Weinheim, and New York, Chapter 1 and references therein
-
(c) Heathcock, C. H. In Modern Synthetic Methods 1992; Scheffold, R., Ed.; VHCA and VCH: Basel, Weinheim, and New York, 1992; Vol. 6, Chapter 1 and references therein.
-
(1992)
Modern Synthetic Methods 1992
, vol.6
-
-
Heathcock, C.H.1
-
5
-
-
0000940636
-
-
3Al (1 equiv) at room temperature under argon. The resulting pale yellow solution was stirred at this temperature for 30 min and used without further purification. (a) Maruoka, K.; Ito, M.; Yamamoto, H. J. Am. Chem. Soc. 1995, 117, 9091. (b) Maruoka K.; Saito, S.; Yamamoto, H Ibid. 1995, 117, 1165. (c) Maruoka, K.; Imoto, H.; Yamamoto, H. Ibid. 1994, 116, 12115. (d) Maruoka, K.; Imoto, H.; Saito, S.; Yamamoto, H. Ibid. 1994, 116, 4131. (e) Saito, S.; Ito, M.; Yamamoto, H. Ibid. 1997, 119, 611.
-
(1995)
J. Am. Chem. Soc.
, vol.117
, pp. 9091
-
-
Maruoka, K.1
Ito, M.2
Yamamoto, H.3
-
6
-
-
0001681743
-
-
3Al (1 equiv) at room temperature under argon. The resulting pale yellow solution was stirred at this temperature for 30 min and used without further purification. (a) Maruoka, K.; Ito, M.; Yamamoto, H. J. Am. Chem. Soc. 1995, 117, 9091. (b) Maruoka K.; Saito, S.; Yamamoto, H Ibid. 1995, 117, 1165. (c) Maruoka, K.; Imoto, H.; Yamamoto, H. Ibid. 1994, 116, 12115. (d) Maruoka, K.; Imoto, H.; Saito, S.; Yamamoto, H. Ibid. 1994, 116, 4131. (e) Saito, S.; Ito, M.; Yamamoto, H. Ibid. 1997, 119, 611.
-
(1995)
J. Am. Chem. Soc.
, vol.117
, pp. 1165
-
-
Maruoka, K.1
Saito, S.2
Yamamoto, H.3
-
7
-
-
0001284159
-
-
3Al (1 equiv) at room temperature under argon. The resulting pale yellow solution was stirred at this temperature for 30 min and used without further purification. (a) Maruoka, K.; Ito, M.; Yamamoto, H. J. Am. Chem. Soc. 1995, 117, 9091. (b) Maruoka K.; Saito, S.; Yamamoto, H Ibid. 1995, 117, 1165. (c) Maruoka, K.; Imoto, H.; Yamamoto, H. Ibid. 1994, 116, 12115. (d) Maruoka, K.; Imoto, H.; Saito, S.; Yamamoto, H. Ibid. 1994, 116, 4131. (e) Saito, S.; Ito, M.; Yamamoto, H. Ibid. 1997, 119, 611.
-
(1994)
J. Am. Chem. Soc.
, vol.116
, pp. 12115
-
-
Maruoka, K.1
Imoto, H.2
Yamamoto, H.3
-
8
-
-
0001280755
-
-
3Al (1 equiv) at room temperature under argon. The resulting pale yellow solution was stirred at this temperature for 30 min and used without further purification. (a) Maruoka, K.; Ito, M.; Yamamoto, H. J. Am. Chem. Soc. 1995, 117, 9091. (b) Maruoka K.; Saito, S.; Yamamoto, H Ibid. 1995, 117, 1165. (c) Maruoka, K.; Imoto, H.; Yamamoto, H. Ibid. 1994, 116, 12115. (d) Maruoka, K.; Imoto, H.; Saito, S.; Yamamoto, H. Ibid. 1994, 116, 4131. (e) Saito, S.; Ito, M.; Yamamoto, H. Ibid. 1997, 119, 611.
-
(1994)
J. Am. Chem. Soc.
, vol.116
, pp. 4131
-
-
Maruoka, K.1
Imoto, H.2
Saito, S.3
Yamamoto, H.4
-
9
-
-
0031028852
-
-
3Al (1 equiv) at room temperature under argon. The resulting pale yellow solution was stirred at this temperature for 30 min and used without further purification. (a) Maruoka, K.; Ito, M.; Yamamoto, H. J. Am. Chem. Soc. 1995, 117, 9091. (b) Maruoka K.; Saito, S.; Yamamoto, H Ibid. 1995, 117, 1165. (c) Maruoka, K.; Imoto, H.; Yamamoto, H. Ibid. 1994, 116, 12115. (d) Maruoka, K.; Imoto, H.; Saito, S.; Yamamoto, H. Ibid. 1994, 116, 4131. (e) Saito, S.; Ito, M.; Yamamoto, H. Ibid. 1997, 119, 611.
-
(1997)
J. Am. Chem. Soc.
, vol.119
, pp. 611
-
-
Saito, S.1
Ito, M.2
Yamamoto, H.3
-
10
-
-
0009268211
-
-
The alkylation of aldimine dienolates occurred at the α-carbons of the parent imine functionalities: (a) Vedejs, E.; Gapinski, D. M.; McElvain, S. M. Tetrahedron Lett. 1981, 22, 4913. The aldol condensation of aldehyde dienolates proceeded at the α-carbons of the parent carbonyls: (b) Groenewegen, P.; Kallenberg, H.; van der Gen, A. Tetrahedron Lett. 1978. 491.
-
(1981)
Tetrahedron Lett.
, vol.22
, pp. 4913
-
-
Vedejs, E.1
Gapinski, D.M.2
McElvain, S.M.3
-
11
-
-
0013492334
-
-
The alkylation of aldimine dienolates occurred at the α-carbons of the parent imine functionalities: (a) Vedejs, E.; Gapinski, D. M.; McElvain, S. M. Tetrahedron Lett. 1981, 22, 4913. The aldol condensation of aldehyde dienolates proceeded at the α-carbons of the parent carbonyls: (b) Groenewegen, P.; Kallenberg, H.; van der Gen, A. Tetrahedron Lett. 1978. 491.
-
(1978)
Tetrahedron Lett.
, pp. 491
-
-
Groenewegen, P.1
Kallenberg, H.2
Van Der Gen, A.3
-
12
-
-
84920296918
-
-
note
-
The carbanions generated by the present ATPH-LDA method underwent exclusive 1,2-addition. The exact origin of this 1,2-regioselectivity could not be rationalized at this time. However, our possible explanation is that the anion could react with electrophile rapidly enough before complex formation with solvent THF or other possible lithium ligands.
-
-
-
-
13
-
-
0008384277
-
-
Trost, B. M., Ed.; Pergamon Press: Oxford, Chapter 1.1, and references therein
-
Under kinetic control, cross-conjugated dienolates are the dominant species, whereas extended dienolates are produced preferentially under thermodynamic conditions, such as when using MOBu′ or MH (M = Na, K). These dienolates are generally prone to undergo α-alkylation. (matrix presented) (a) Caine, D. In Comprehensive Organic Synthesis; Trost, B. M., Ed.; Pergamon Press: Oxford, 1991; Vol. 3, Chapter 1.1, p 21, and references therein. For O-silylation of extended dienolates with TMSCl, see: (b) Stork, G.; Hudrlik, P. F. J. Am. Chem. Soc. 1968, 90, 4464. (c) Kharash, M. S.; Tawney, P. O. Ibid. 1941, 63, 2308; 1945, 67, 128. (d) Kawanishi, M.; Itoh, Y.; Hieda, T.; Kozima, S. Kitoni, T.; Kobayashi, K. Chem. Lett. 1985, 647. (e) Krafft, M. E.; Holton, R. A. J. Am. Chem. Soc. 1984, 106, 7619.
-
(1991)
Comprehensive Organic Synthesis
, vol.3
, pp. 21
-
-
Caine, D.1
-
14
-
-
33947301271
-
-
Under kinetic control, cross-conjugated dienolates are the dominant species, whereas extended dienolates are produced preferentially under thermodynamic conditions, such as when using MOBu′ or MH (M = Na, K). These dienolates are generally prone to undergo α-alkylation. (matrix presented) (a) Caine, D. In Comprehensive Organic Synthesis; Trost, B. M., Ed.; Pergamon Press: Oxford, 1991; Vol. 3, Chapter 1.1, p 21, and references therein. For O-silylation of extended dienolates with TMSCl, see: (b) Stork, G.; Hudrlik, P. F. J. Am. Chem. Soc. 1968, 90, 4464. (c) Kharash, M. S.; Tawney, P. O. Ibid. 1941, 63, 2308; 1945, 67, 128. (d) Kawanishi, M.; Itoh, Y.; Hieda, T.; Kozima, S. Kitoni, T.; Kobayashi, K. Chem. Lett. 1985, 647. (e) Krafft, M. E.; Holton, R. A. J. Am. Chem. Soc. 1984, 106, 7619.
-
(1968)
J. Am. Chem. Soc.
, vol.90
, pp. 4464
-
-
Stork, G.1
Hudrlik, P.F.2
-
15
-
-
33947445897
-
-
Under kinetic control, cross-conjugated dienolates are the dominant species, whereas extended dienolates are produced preferentially under thermodynamic conditions, such as when using MOBu′ or MH (M = Na, K). These dienolates are generally prone to undergo α-alkylation. (matrix presented) (a) Caine, D. In Comprehensive Organic Synthesis; Trost, B. M., Ed.; Pergamon Press: Oxford, 1991; Vol. 3, Chapter 1.1, p 21, and references therein. For O-silylation of extended dienolates with TMSCl, see: (b) Stork, G.; Hudrlik, P. F. J. Am. Chem. Soc. 1968, 90, 4464. (c) Kharash, M. S.; Tawney, P. O. Ibid. 1941, 63, 2308; 1945, 67, 128. (d) Kawanishi, M.; Itoh, Y.; Hieda, T.; Kozima, S. Kitoni, T.; Kobayashi, K. Chem. Lett. 1985, 647. (e) Krafft, M. E.; Holton, R. A. J. Am. Chem. Soc. 1984, 106, 7619.
-
(1941)
J. Am. Chem. Soc.
, vol.63
, pp. 2308
-
-
Kharash, M.S.1
Tawney, P.O.2
-
16
-
-
33748900135
-
-
Under kinetic control, cross-conjugated dienolates are the dominant species, whereas extended dienolates are produced preferentially under thermodynamic conditions, such as when using MOBu′ or MH (M = Na, K). These dienolates are generally prone to undergo α-alkylation. (matrix presented) (a) Caine, D. In Comprehensive Organic Synthesis; Trost, B. M., Ed.; Pergamon Press: Oxford, 1991; Vol. 3, Chapter 1.1, p 21, and references therein. For O-silylation of extended dienolates with TMSCl, see: (b) Stork, G.; Hudrlik, P. F. J. Am. Chem. Soc. 1968, 90, 4464. (c) Kharash, M. S.; Tawney, P. O. Ibid. 1941, 63, 2308; 1945, 67, 128. (d) Kawanishi, M.; Itoh, Y.; Hieda, T.; Kozima, S. Kitoni, T.; Kobayashi, K. Chem. Lett. 1985, 647. (e) Krafft, M. E.; Holton, R. A. J. Am. Chem. Soc. 1984, 106, 7619.
-
(1945)
J. Am. Chem. Soc.
, vol.67
, pp. 128
-
-
-
17
-
-
0242597292
-
-
Under kinetic control, cross-conjugated dienolates are the dominant species, whereas extended dienolates are produced preferentially under thermodynamic conditions, such as when using MOBu′ or MH (M = Na, K). These dienolates are generally prone to undergo α-alkylation. (matrix presented) (a) Caine, D. In Comprehensive Organic Synthesis; Trost, B. M., Ed.; Pergamon Press: Oxford, 1991; Vol. 3, Chapter 1.1, p 21, and references therein. For O-silylation of extended dienolates with TMSCl, see: (b) Stork, G.; Hudrlik, P. F. J. Am. Chem. Soc. 1968, 90, 4464. (c) Kharash, M. S.; Tawney, P. O. Ibid. 1941, 63, 2308; 1945, 67, 128. (d) Kawanishi, M.; Itoh, Y.; Hieda, T.; Kozima, S. Kitoni, T.; Kobayashi, K. Chem. Lett. 1985, 647. (e) Krafft, M. E.; Holton, R. A. J. Am. Chem. Soc. 1984, 106, 7619.
-
(1985)
Chem. Lett.
, pp. 647
-
-
Kawanishi, M.1
Itoh, Y.2
Hieda, T.3
Kozima, S.4
Kitoni, T.5
Kobayashi, K.6
-
18
-
-
0342379406
-
-
Under kinetic control, cross-conjugated dienolates are the dominant species, whereas extended dienolates are produced preferentially under thermodynamic conditions, such as when using MOBu′ or MH (M = Na, K). These dienolates are generally prone to undergo α-alkylation. (matrix presented) (a) Caine, D. In Comprehensive Organic Synthesis; Trost, B. M., Ed.; Pergamon Press: Oxford, 1991; Vol. 3, Chapter 1.1, p 21, and references therein. For O-silylation of extended dienolates with TMSCl, see: (b) Stork, G.; Hudrlik, P. F. J. Am. Chem. Soc. 1968, 90, 4464. (c) Kharash, M. S.; Tawney, P. O. Ibid. 1941, 63, 2308; 1945, 67, 128. (d) Kawanishi, M.; Itoh, Y.; Hieda, T.; Kozima, S. Kitoni, T.; Kobayashi, K. Chem. Lett. 1985, 647. (e) Krafft, M. E.; Holton, R. A. J. Am. Chem. Soc. 1984, 106, 7619.
-
(1984)
J. Am. Chem. Soc.
, vol.106
, pp. 7619
-
-
Krafft, M.E.1
Holton, R.A.2
-
22
-
-
0002819491
-
-
Augustine, R. L., Ed.; Dekker: New York, Chapter 2, and references therein
-
There are numerous examples of intramolecular γ-alkylations of ketone dienolates: (a) Caine, D. In Carbon-Carbon Bond Formation; Augustine, R. L., Ed.; Dekker: New York, 1979; Vol. 1, Chapter 2, p 85, and references therein. See also refs 1b and 1 in the Supporting Information.
-
(1979)
Carbon-Carbon Bond Formation
, vol.1
, pp. 85
-
-
Caine, D.1
-
23
-
-
84920296917
-
-
See footnote c of Table 2
-
See footnote c of Table 2.
-
-
-
-
25
-
-
0026599714
-
-
(b) Ley, S. V.; Smith, S. C.; Woodward, P. R. Tetrahedron 1992, 48, 1145.
-
(1992)
Tetrahedron
, vol.48
, pp. 1145
-
-
Ley, S.V.1
Smith, S.C.2
Woodward, P.R.3
|