-
1
-
-
0000790730
-
Four mutually orthogonal Latin squares of order 28 and 52
-
R.J.R. Abel, Four mutually orthogonal Latin squares of order 28 and 52, J. Combin. Theory (A) 58 (1991), 306-309.
-
(1991)
J. Combin. Theory (A)
, vol.58
, pp. 306-309
-
-
Abel, R.J.R.1
-
2
-
-
0000938226
-
Four MOLS of order 20, 30, 38 and 44
-
R.J.R. Abel and D.T. Todorov, Four MOLS of order 20, 30, 38 and 44, J, Combin. Theory (A) 64 (1993), 144-148.
-
(1993)
J, Combin. Theory (A)
, vol.64
, pp. 144-148
-
-
Abel, R.J.R.1
Todorov, D.T.2
-
3
-
-
0013477378
-
Existence of DBIBDs with block size six
-
F.E. Bennett, R. Wei, J. Yin and A. Mahmoodi, Existence of DBIBDs with block size six, Utilitas Math. 43 (1993), 205-217.
-
(1993)
Utilitas Math.
, vol.43
, pp. 205-217
-
-
Bennett, F.E.1
Wei, R.2
Yin, J.3
Mahmoodi, A.4
-
5
-
-
0001217815
-
Four MOLS of order 10 with a hole of order 2
-
A.E. Brouwer, Four MOLS of order 10 with a hole of order 2, J. Statist. Planning and Inference 10 (1984), 203-205.
-
(1984)
J. Statist. Planning and Inference
, vol.10
, pp. 203-205
-
-
Brouwer, A.E.1
-
6
-
-
0000154250
-
More mutually orthogonal Latin squares
-
A.E. Brouwer and G.H.J. van Rees, More mutually orthogonal Latin squares, Discrete Math. 39 (1982), 263-281.
-
(1982)
Discrete Math.
, vol.39
, pp. 263-281
-
-
Brouwer, A.E.1
Van Rees, G.H.J.2
-
7
-
-
85168550991
-
The number of mutually orthogonal Latin squares - A table up to order 10000
-
A.E. Brouwer, The number of mutually orthogonal Latin squares - a table up to order 10000, Math. Cent. Report ZW 123/79.
-
Math. Cent. Report ZW 123/79
-
-
Brouwer, A.E.1
-
8
-
-
0013479539
-
Four MOLS of order 26
-
C.J. Colbourn, Four MOLS of order 26, JCMCC 26 (1995), 147-148.
-
(1995)
JCMCC
, vol.26
, pp. 147-148
-
-
Colbourn, C.J.1
-
9
-
-
0002121104
-
Directed and Mendelsohn triple systems
-
Wiley
-
C.J. Colbourn and A. Rosa, Directed and Mendelsohn triple systems, in: Contemporary Design Theory, Wiley, (1992), 97-136.
-
(1992)
Contemporary Design Theory
, pp. 97-136
-
-
Colbourn, C.J.1
Rosa, A.2
-
10
-
-
0013524544
-
Existence of incomplete transversal designs with block size five and any index λ
-
R.J.R. Abel, C.J. Colbourn, J. Yin and H. Zhang, Existence of incomplete transversal designs with block size five and any index λ, Designs Codes Crypt. 10 (1997), 275-307.
-
(1997)
Designs Codes Crypt.
, vol.10
, pp. 275-307
-
-
Abel, R.J.R.1
Colbourn, C.J.2
Yin, J.3
Zhang, H.4
-
11
-
-
49549139524
-
Balanced incomplete block designs and related designs
-
H. Hanani, Balanced incomplete block designs and related designs, Discrete Math. 11 (1975), 255-369.
-
(1975)
Discrete Math.
, vol.11
, pp. 255-369
-
-
Hanani, H.1
-
12
-
-
0013480068
-
Existence of orthogonal Latin squares with aligned subsquares
-
K. Heinrich and L. Zhu, Existence of orthogonal Latin squares with aligned subsquares, Discrete Math. 59 (1984), 241-248.
-
(1984)
Discrete Math.
, vol.59
, pp. 241-248
-
-
Heinrich, K.1
Zhu, L.2
-
13
-
-
0002832164
-
Sub-Latin squares and incomplete orthogonal arrays
-
J.D. Horton, Sub-Latin squares and incomplete orthogonal arrays, J. Combin. Theory (A) 16 (1974), 23-33.
-
(1974)
J. Combin. Theory (A)
, vol.16
, pp. 23-33
-
-
Horton, J.D.1
-
14
-
-
0000397575
-
Four pairwise orthogonal Latin squares of order 24
-
R. Roth and M. Peters, Four pairwise orthogonal Latin squares of order 24, J. Combin. Theory (A) 44 (1987), 152-155.
-
(1987)
J. Combin. Theory (A)
, vol.44
, pp. 152-155
-
-
Roth, R.1
Peters, M.2
-
15
-
-
0013512115
-
All DBIBDs with block size four exist
-
D.J. Street and J.R. Seberry, All DBIBDs with block size four exist, Utilitas Math. 18 (1980), 27-34.
-
(1980)
Utilitas Math.
, vol.18
, pp. 27-34
-
-
Street, D.J.1
Seberry, J.R.2
-
16
-
-
0002868430
-
On directed balanced incomplete block designs with block size five
-
D.J. Street and W.H. Wilson, On directed balanced incomplete block designs with block size five, Utilitas Math. 18 (1980), 161-174.
-
(1980)
Utilitas Math.
, vol.18
, pp. 161-174
-
-
Street, D.J.1
Wilson, W.H.2
-
17
-
-
0000610109
-
Concerning the number of mutually orthogonal Latin squares
-
R.M. Wilson, Concerning the number of mutually orthogonal Latin squares, Discrete Math. 9 (1974), 181-198.
-
(1974)
Discrete Math.
, vol.9
, pp. 181-198
-
-
Wilson, R.M.1
-
18
-
-
0002954340
-
Constructions and uses of pairwise balanced designs
-
R.M. Wilson, Constructions and uses of pairwise balanced designs, Math. Centre Tracts 55 (1974), 18-41.
-
(1974)
Math. Centre Tracts
, vol.55
, pp. 18-41
-
-
Wilson, R.M.1
|