-
1
-
-
85033925558
-
-
For the American Journal of Physics (1972-1995) and The Physics Teacher (1976-1995), Search by word (not string) for jerk, jerks, jerky,...
-
For the American Journal of Physics (1972-1995) and The Physics Teacher (1976-1995), see the Electronic Index through http:// www.amherst.edu/~ajp. Search by word (not string) for jerk, jerks, jerky,... .
-
-
-
-
2
-
-
0001305336
-
Question #38. What is the simplest jerk function that gives chaos?
-
H. P. W. Gottlieb, "Question #38. What is the simplest jerk function that gives chaos?" Am. J. Phys. 64 (5), 525 (1996).
-
(1996)
Am. J. Phys.
, vol.64
, Issue.5
, pp. 525
-
-
Gottlieb, H.P.W.1
-
3
-
-
0031509406
-
Some simple chaotic jerk functions
-
J. C. Sprott, "Some simple chaotic jerk functions," Am. J. Phys. 65 (6), 537-543 (1997).
-
(1997)
Am. J. Phys.
, vol.65
, Issue.6
, pp. 537-543
-
-
Sprott, J.C.1
-
4
-
-
0041322255
-
Simplest dissipative chaotic flow
-
J. C. Sprott, "Simplest dissipative chaotic flow," Phys. Lett. A 228, 271-274 (1997).
-
(1997)
Phys. Lett. A
, vol.228
, pp. 271-274
-
-
Sprott, J.C.1
-
5
-
-
0031478493
-
Nonlinear dynamical models and jerky motion
-
S. J. Linz, "Nonlinear dynamical models and jerky motion," Am. J. Phys. 65 (6), 523-526 (1997).
-
(1997)
Am. J. Phys.
, vol.65
, Issue.6
, pp. 523-526
-
-
Linz, S.J.1
-
6
-
-
0038975635
-
The non-local oscillator
-
A. Maccari, "The non-local oscillator," Nuovo Cimento B 111 (8), 917-930 (1996).
-
(1996)
Nuovo Cimento B
, vol.111
, Issue.8
, pp. 917-930
-
-
Maccari, A.1
-
7
-
-
33744679129
-
Question #51. Applications of third-order and fifth-order differential equations
-
D. E. Neuenschwander, "Question #51. Applications of third-order and fifth-order differential equations," Am. J. Phys. 64 (11), 1353 (1996).
-
(1996)
Am. J. Phys.
, vol.64
, Issue.11
, pp. 1353
-
-
Neuenschwander, D.E.1
-
8
-
-
0004427090
-
All shook up
-
H. C. von Baeyer, "All shook up," The Sciences 38 (1), 12-14 (1998).
-
(1998)
The Sciences
, vol.38
, Issue.1
, pp. 12-14
-
-
Von Baeyer, H.C.1
-
9
-
-
0347391166
-
Oscillation of a third order nonlinear autonomous system
-
Contributions to the Theory of Nonlinear Oscillations, edited by S. Lefschetz, Princeton U.P., Princeton
-
L. L. Rauch, "Oscillation of a third order nonlinear autonomous system," in Contributions to the Theory of Nonlinear Oscillations, edited by S. Lefschetz, Annals of Mathematics Studies Vol. 20 (Princeton U.P., Princeton, 1950).
-
(1950)
Annals of Mathematics Studies
, vol.20
-
-
Rauch, L.L.1
-
10
-
-
0347391170
-
On the study of a third-order mechanical oscillator
-
B. V. Dasarathy and P. Srinivasan, "On the study of a third-order mechanical oscillator," J. Sound Vib. 9, 49-52 (1969).
-
(1969)
J. Sound Vib.
, vol.9
, pp. 49-52
-
-
Dasarathy, B.V.1
Srinivasan, P.2
-
11
-
-
52149108159
-
Aperiodic behaviour of a non-linear oscillator
-
N. H. Baker, D. W. Moore, and E. A. Spiegel, "Aperiodic behaviour of a non-linear oscillator," Q. J. Mech. Appl. Math. 24 (4), 391-422 (1971).
-
(1971)
Q. J. Mech. Appl. Math.
, vol.24
, Issue.4
, pp. 391-422
-
-
Baker, N.H.1
Moore, D.W.2
Spiegel, E.A.3
-
12
-
-
0015080561
-
Non-linear oscillations of a third-order differential equation
-
R. J. Mulholland, "Non-linear oscillations of a third-order differential equation," Int. J. Nonlinear Mech. 6, 279-294 (1971).
-
(1971)
Int. J. Nonlinear Mech.
, vol.6
, pp. 279-294
-
-
Mulholland, R.J.1
-
13
-
-
0028055201
-
Numerical simulations of piano strings. I. A physical model for a struck string using finite difference methods
-
A. Chaigne and A. Askenfelt, "Numerical simulations of piano strings. I. A physical model for a struck string using finite difference methods," J. Acoust. Soc. Am. 95 (2), 1112-1118 (1994).
-
(1994)
J. Acoust. Soc. Am.
, vol.95
, Issue.2
, pp. 1112-1118
-
-
Chaigne, A.1
Askenfelt, A.2
-
14
-
-
0016521021
-
Acoustical radiation damping of vibrating solids
-
H. P. W. Gottlieb, "Acoustical radiation damping of vibrating solids," J. Sound Vib. 40 (4), 521-533 (1975).
-
(1975)
J. Sound Vib.
, vol.40
, Issue.4
, pp. 521-533
-
-
Gottlieb, H.P.W.1
-
15
-
-
0028556126
-
Vibrational modes of submerged elastic spheres
-
P. E. Barbone and D. G. Crighton, "Vibrational modes of submerged elastic spheres," Appl. Acoust. 43, 295-317 (1994).
-
(1994)
Appl. Acoust.
, vol.43
, pp. 295-317
-
-
Barbone, P.E.1
Crighton, D.G.2
-
16
-
-
0012782683
-
-
American Institute of Physics, New York, PC Version 1.5
-
J. M. Aguirregabiria, ODE Workbench (American Institute of Physics, New York, 1994), PC Version 1.5.
-
(1994)
ODE Workbench
-
-
Aguirregabiria, J.M.1
-
17
-
-
33744611017
-
Jerk by group theoretical methods
-
J. Nzotungicimpaye, "Jerk by group theoretical methods," J. Phys. A 27, 4519-4526 (1994).
-
(1994)
J. Phys. A
, vol.27
, pp. 4519-4526
-
-
Nzotungicimpaye, J.1
-
18
-
-
0003851731
-
-
Dover, New York, Chap. 6, by P. J. Davis
-
M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1972), Chap. 6, by P. J. Davis.
-
Handbook of Mathematical Functions
, vol.1972
-
-
Abramowitz, M.1
Stegun, I.A.2
-
20
-
-
0003508788
-
-
Clarendon, Oxford, 2nd ed.
-
D. W. Jordan and P. Smith, Nonlinear Ordinary Differential Equations (Clarendon, Oxford, 1989), 2nd ed., p. 342.
-
(1989)
Nonlinear Ordinary Differential Equations
, pp. 342
-
-
Jordan, D.W.1
Smith, P.2
-
21
-
-
0009809703
-
Studying chaotic systems using microcomputer simulations and Lyapunov exponents
-
S. De Souza-Machado, R. W. Rollins, D. T. Jacobs, and J. L. Hartman, "Studying chaotic systems using microcomputer simulations and Lyapunov exponents," Am. J. Phys. 58 (4), 321-329 (1990).
-
(1990)
Am. J. Phys.
, vol.58
, Issue.4
, pp. 321-329
-
-
De Souza-Machado, S.1
Rollins, R.W.2
Jacobs, D.T.3
Hartman, J.L.4
|