메뉴 건너뛰기




Volumn 35, Issue 1, 1998, Pages 78-92

Stationary time series models with exponential dispersion model margins

Author keywords

Autoregressive process; Convolution closed family; Infinite divisibility; Moving average process of infinite order; Non normal time series; Saddlepoint approximation; Small dispersion asymptotics; Thinning

Indexed keywords


EID: 0032387664     PISSN: 00219002     EISSN: None     Source Type: Journal    
DOI: 10.1017/S0021900200014698     Document Type: Article
Times cited : (34)

References (30)
  • 1
    • 0037548308 scopus 로고
    • First-order autoregressive time series with negative binomial and geometric marginals
    • AL-OSH, M. A. AND ALY, E. A. A. (1992). First-order autoregressive time series with negative binomial and geometric marginals. Commun. Statist. A 21, 2483-2492.
    • (1992) Commun. Statist. A , vol.21 , pp. 2483-2492
    • Al-Osh, M.A.1    Aly, E.A.A.2
  • 2
    • 84986870293 scopus 로고
    • First-order integer-valued autoregressive (INAR(1)) process
    • AL-OSH, M. A. AND ALZAID, A. A. (1987). First-order integer-valued autoregressive (INAR(1)) process. J. Time Series Anal. 8, 261-275.
    • (1987) J. Time Series Anal. , vol.8 , pp. 261-275
    • Al-Osh, M.A.1    Alzaid, A.A.2
  • 3
    • 0041133163 scopus 로고
    • Some autoregressive moving average processes with generalized poisson marginal distributions
    • ALZAID, A. A. AND AL-OSH, M. A. (1993). Some autoregressive moving average processes with generalized Poisson marginal distributions. Ann. Inst. Statist. Math. 45, 223-232.
    • (1993) Ann. Inst. Statist. Math. , vol.45 , pp. 223-232
    • Alzaid, A.A.1    Al-Osh, M.A.2
  • 10
    • 0000959565 scopus 로고
    • First-order autoregressive gamma sequences and point processes
    • GAVER, D. P. AND LEWIS, P. A. W. (1980). First-order autoregressive gamma sequences and point processes. Adv. Appl. Prob. 12, 727-745.
    • (1980) Adv. Appl. Prob. , vol.12 , pp. 727-745
    • Gaver, D.P.1    Lewis, P.A.W.2
  • 11
    • 0011992581 scopus 로고
    • A mixed autoregressive-moving average exponential sequence and point process (EARMA 1,1)
    • JACOBS, P. A. AND LEWIS, P. A. W. (1977). A mixed autoregressive-moving average exponential sequence and point process (EARMA 1,1). Adv. Appl. Prob. 9, 87-104.
    • (1977) Adv. Appl. Prob. , vol.9 , pp. 87-104
    • Jacobs, P.A.1    Lewis, P.A.W.2
  • 13
    • 0030511667 scopus 로고    scopus 로고
    • Time series models with univariate margins in the convolution-closed infinitely divisible class
    • JOE, H. (1996). Time series models with univariate margins in the convolution-closed infinitely divisible class. J. Appl. Prob. 33, 664-677.
    • (1996) J. Appl. Prob. , vol.33 , pp. 664-677
    • Joe, H.1
  • 14
    • 0000820539 scopus 로고
    • Some properties of exponential dispersion models
    • JØRGENSEN, B. (1986). Some properties of exponential dispersion models. Scand. J. Statist. 13, 187-198.
    • (1986) Scand. J. Statist. , vol.13 , pp. 187-198
    • JØrgensen, B.1
  • 15
    • 0000955861 scopus 로고
    • Exponential dispersion models
    • JØRGENSEN, B. (1987). Exponential dispersion models (with discussion). J. Roy. Statist. Soc. B 49, 127-162.
    • (1987) J. Roy. Statist. Soc. B , vol.49 , pp. 127-162
    • JØrgensen, B.1
  • 16
    • 0002845625 scopus 로고
    • Exponential dispersion models and extensions: A review
    • JØRGENSEN, B. (1992). Exponential dispersion models and extensions: a review. Int. Statist. Rev. 60, 5-20.
    • (1992) Int. Statist. Rev. , vol.60 , pp. 5-20
    • JØrgensen, B.1
  • 17
    • 0011377685 scopus 로고
    • Fitting Tweedie's compound poisson model to insurance claims data
    • JØRGENSEN, B. AND SOUZA, M. P. (1994). Fitting Tweedie's compound Poisson model to insurance claims data. Scand. Act. J. 69-93.
    • (1994) Scand. Act. J. , pp. 69-93
    • JØrgensen, B.1    Souza, M.P.2
  • 18
  • 19
    • 0040923456 scopus 로고    scopus 로고
    • Tauber theory for infinitely divisible variance functions
    • JØRGENSEN, B. AND MARTÍNEZ, J. R. (1997). Tauber theory for infinitely divisible variance functions. Bernoulli 3, 213-224.
    • (1997) Bernoulli , vol.3 , pp. 213-224
    • JØrgensen, B.1    Martínez, J.R.2
  • 20
    • 0000561669 scopus 로고
    • The innovation distribution of a gamma distributed autoregressive process
    • LAWRANCE, A. J. (1982). The innovation distribution of a gamma distributed autoregressive process. Scand. J. Statist. 9, 234-236.
    • (1982) Scand. J. Statist. , vol.9 , pp. 234-236
    • Lawrance, A.J.1
  • 21
    • 0002341685 scopus 로고
    • An exponential moving average sequence and point process (EMA 1)
    • LAWRANCE, A. J. AND LEWIS, P. A. W. (1977). An exponential moving average sequence and point process (EMA 1). J. Appl. Prob. 14, 98-113.
    • (1977) J. Appl. Prob. , vol.14 , pp. 98-113
    • Lawrance, A.J.1    Lewis, P.A.W.2
  • 22
    • 0002757787 scopus 로고
    • Natural real exponential families with cubic variances
    • LETAC, G. AND MORA, M. (1990). Natural real exponential families with cubic variances. Ann. Statist. 18, 1-37.
    • (1990) Ann. Statist. , vol.18 , pp. 1-37
    • Letac, G.1    Mora, M.2
  • 23
    • 0020906791 scopus 로고
    • Generating negatively correlated gamma variates using the beta-gamma transform
    • ed. S. Roberts. J. Banks and B. Schmeiser. IEEE Press, New York
    • LEWIS, P. A. W. (1983). Generating negatively correlated gamma variates using the beta-gamma transform. In Proc. 1983 Winter Simulation Conf. ed. S. Roberts. J. Banks and B. Schmeiser. IEEE Press, New York. pp. 175-176.
    • (1983) Proc. 1983 Winter Simulation Conf. , pp. 175-176
    • Lewis, P.A.W.1
  • 25
    • 21144479372 scopus 로고
    • Asymptotic analysis of extremes from autoregressive negative binomial processes
    • MCCORMICK, W. P. AND PARK, Y. S. (1992). Asymptotic analysis of extremes from autoregressive negative binomial processes. J. Appl. Prob. 29, 904-920.
    • (1992) J. Appl. Prob. , vol.29 , pp. 904-920
    • McCormick, W.P.1    Park, Y.S.2
  • 26
    • 0000049454 scopus 로고
    • Autoregressive moving average processes with negative-binomial and geometric marginal distributions
    • MCKENZIE, E. (1986). Autoregressive moving average processes with negative-binomial and geometric marginal distributions. Adv. Appl. Prob. 18, 679-705.
    • (1986) Adv. Appl. Prob. , vol.18 , pp. 679-705
    • McKenzie, E.1
  • 27
    • 0001179319 scopus 로고
    • Some ARMA models for dependent sequences of poisson counts
    • MCKENZIE, E. (1988). Some ARMA models for dependent sequences of Poisson counts. Adv. Appl. Prob. 20, 822-835.
    • (1988) Adv. Appl. Prob. , vol.20 , pp. 822-835
    • McKenzie, E.1
  • 28
    • 0002233396 scopus 로고
    • Natural exponential families with quadratic variance functions
    • MORRIS, C. N. (1982). Natural exponential families with quadratic variance functions. Ann. Statist. 10, 65-80.
    • (1982) Ann. Statist. , vol.10 , pp. 65-80
    • Morris, C.N.1
  • 29
    • 38249013086 scopus 로고
    • General exponential models on the unit simplex and related multivariate inverse Gaussian distributions
    • SESHADRI, V. (1992). General exponential models on the unit simplex and related multivariate inverse Gaussian distributions. Statist. Prob. Lett. 14, 385-391.
    • (1992) Statist. Prob. Lett. , vol.14 , pp. 385-391
    • Seshadri, V.1
  • 30
    • 0039145232 scopus 로고
    • The inverse binomial distribution as a statistical model
    • YANAGIMOTO, T. (1989). The inverse binomial distribution as a statistical model. Commun. Statist. 18, 3625-3633.
    • (1989) Commun. Statist. , vol.18 , pp. 3625-3633
    • Yanagimoto, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.