메뉴 건너뛰기




Volumn 26, Issue 1, 1998, Pages 279-287

Asymptotic nonequivalence of nonparametric experiments when the smoothness index is 1/2

Author keywords

Density estimation; Nonparametric regression; Risk equivalence; White noise

Indexed keywords


EID: 0032387073     PISSN: 00905364     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (35)

References (5)
  • 1
    • 0030335402 scopus 로고    scopus 로고
    • Asymptotic equivalence of nonparametric regression and white noise
    • BROWN, L. D. and LOW, M. G. (1996). Asymptotic equivalence of nonparametric regression and white noise. Ann. Statist. 24 2384-2398.
    • (1996) Ann. Statist. , vol.24 , pp. 2384-2398
    • Brown, L.D.1    Low, M.G.2
  • 3
    • 0030585538 scopus 로고    scopus 로고
    • Asymptotic equivalence of nonparametric regression and white noise has its limits
    • EFROMOVICH, S. and SAMAROV, A. (1996). Asymptotic equivalence of nonparametric regression and white noise has its limits. Statist. Probab. Lett. 28 143-145.
    • (1996) Statist. Probab. Lett. , vol.28 , pp. 143-145
    • Efromovich, S.1    Samarov, A.2
  • 4
    • 0030328670 scopus 로고    scopus 로고
    • Asymptotic equivalence of density estimation and white noise
    • NUSSBAUM, M. (1996). Asymptotic equivalence of density estimation and white noise. Ann. Statist. 24 2399-2430.
    • (1996) Ann. Statist. , vol.24 , pp. 2399-2430
    • Nussbaum, M.1
  • 5
    • 0011026447 scopus 로고
    • Asymptotically subminimax solutions of compound statistical decision problems
    • Univ. California Press, Berkeley
    • ROBBINS, H. (1951). Asymptotically subminimax solutions of compound statistical decision problems. Proc. Second Berkeley Symp. Math. Statist. Probab. 1 131-148. Univ. California Press, Berkeley.
    • (1951) Proc. Second Berkeley Symp. Math. Statist. Probab. , vol.1 , pp. 131-148
    • Robbins, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.