-
3
-
-
0002302109
-
-
G. Stell, Physica 29, 517 (1963); G. Stell, "Cluster expansions for classical systems in equilibrium," in The Equilibrium Theory of Classical Fluids, edited by H. L. Frisch and J. L. Lebowitz (Benjamin, New York, 1964), p. II-171.
-
(1963)
Physica
, vol.29
, pp. 517
-
-
Stell, G.1
-
4
-
-
0001759576
-
Cluster expansions for classical systems in equilibrium
-
edited by H. L. Frisch and J. L. Lebowitz Benjamin, New York
-
G. Stell, Physica 29, 517 (1963); G. Stell, "Cluster expansions for classical systems in equilibrium," in The Equilibrium Theory of Classical Fluids, edited by H. L. Frisch and J. L. Lebowitz (Benjamin, New York, 1964), p. II-171.
-
(1964)
The Equilibrium Theory of Classical Fluids
-
-
Stell, G.1
-
6
-
-
0001852082
-
-
and references therein
-
R. Fukuda, M. Komachiya, S. Yokojima, Y. Suzuki, K. Okumura, and T. Inagaki, Prog. Theor. Phys. Suppl. 121, 1 (1995), and references therein.
-
(1995)
Prog. Theor. Phys. Suppl.
, vol.121
, pp. 1
-
-
Fukuda, R.1
Komachiya, M.2
Yokojima, S.3
Suzuki, Y.4
Okumura, K.5
Inagaki, T.6
-
10
-
-
34547143299
-
-
H. J. Raveché, J. Chem. Phys. 55, 2242 (1971); 55, 2250 (1971).
-
(1971)
J. Chem. Phys.
, vol.55
, pp. 2250
-
-
-
14
-
-
0040877601
-
-
J. A. Hernando, Mol. Phys. 69, 319 (1990); 69, 327 (1990).
-
(1990)
Mol. Phys.
, vol.69
, pp. 327
-
-
-
17
-
-
0004975826
-
-
B. B. Laird, J. Wang, and A. D. J. Haymet, J. Chem. Phys. 97, 2153 (1992); Phys. Rev. A 45, 5680 (1992).
-
(1992)
J. Chem. Phys.
, vol.97
, pp. 2153
-
-
Laird, B.B.1
Wang, J.2
Haymet, A.D.J.3
-
18
-
-
0001465055
-
-
B. B. Laird, J. Wang, and A. D. J. Haymet, J. Chem. Phys. 97, 2153 (1992); Phys. Rev. A 45, 5680 (1992).
-
(1992)
Phys. Rev. A
, vol.45
, pp. 5680
-
-
-
19
-
-
0001544627
-
-
G. Casanova, R. J. Dulla, D. A. Jonah, J. S. Rowlinson, and G. Saville, Mol. Phys. 18, 589 (1970).
-
(1970)
Mol. Phys.
, vol.18
, pp. 589
-
-
Casanova, G.1
Dulla, R.J.2
Jonah, D.A.3
Rowlinson, J.S.4
Saville, G.5
-
23
-
-
0039099258
-
-
G. Stell, J. Math. Phys. 6, 1193 (1965); G. Stell, "Correlation functions and their generating functionals," in Phase Transitions and Critical Phenomena, edited by Domb and M. S. Green (Academic, London, 1976), Vol. 5B, p. 205.
-
(1965)
J. Math. Phys.
, vol.6
, pp. 1193
-
-
Stell, G.1
-
24
-
-
0039099258
-
Correlation functions and their generating functionals
-
edited by Domb and M. S. Green Academic, London
-
G. Stell, J. Math. Phys. 6, 1193 (1965); G. Stell, "Correlation functions and their generating functionals," in Phase Transitions and Critical Phenomena, edited by Domb and M. S. Green (Academic, London, 1976), Vol. 5B, p. 205.
-
(1976)
Phase Transitions and Critical Phenomena
, vol.5 B
, pp. 205
-
-
Stell, G.1
-
32
-
-
0029252834
-
-
K. Okumura, J. Magn. Magn. Mater. 140-144, 191 (1995); Phys. Rev. B 52, 13358 (1995); Int. J. Mod. Phys. A 11, 65 (1996).
-
(1995)
J. Magn. Magn. Mater.
, vol.140-144
, pp. 191
-
-
Okumura, K.1
-
33
-
-
35949006565
-
-
K. Okumura, J. Magn. Magn. Mater. 140-144, 191 (1995); Phys. Rev. B 52, 13358 (1995); Int. J. Mod. Phys. A 11, 65 (1996).
-
(1995)
Phys. Rev. B
, vol.52
, pp. 13358
-
-
-
34
-
-
0029252834
-
-
K. Okumura, J. Magn. Magn. Mater. 140-144, 191 (1995); Phys. Rev. B 52, 13358 (1995); Int. J. Mod. Phys. A 11, 65 (1996).
-
(1996)
Int. J. Mod. Phys. A
, vol.11
, pp. 65
-
-
-
35
-
-
85033877483
-
-
note
-
If we consider the system without the three-body force, w(r,r′,r″) here is artificial. We can still extract new information, which otherwise could not be obtained, by setting w(r,r′,r″)=0 at the end (as mentioned before).
-
-
-
-
36
-
-
85033878917
-
-
note
-
(1)(r), (B8) which is obtained by taking the expectation of Eq. (2.4).
-
-
-
-
37
-
-
85033880337
-
-
note
-
N(r,r′,r″)=0 for N=0,1,2.
-
-
-
-
39
-
-
85033880244
-
-
note
-
The right-hand side of Eq. (3.1) can be expressed by a sum of all possible diagrams built up with the four elements (black circles, 2-bonds, 3-bonds, and pseudo 2 ponds), which includes disconnected diagrams. Here, as suggested in the text, if there is a 3-bond, every pair from the triplet (connected by the 3-bond) should be connected by a pseudo 2-bond. On the other hand, due to the operation of logarithm. -βΩ does not include disconnected diagrams.
-
-
-
|