-
2
-
-
0040767735
-
-
Ph.D. thesis, University of Toledo, Toledo, OH
-
R. Gompa, "Approximations to the quantum mechanical time evolution," Ph.D. thesis, University of Toledo, Toledo, OH, 1987.
-
(1987)
Approximations to the Quantum Mechanical Time Evolution
-
-
Gompa, R.1
-
4
-
-
0003164337
-
-
This normal form approach differs from that used, e.g., by J. Bellisard and M. Vittot, Ann. Inst. Henri Poincaré 52, 175 (1990) and by M. Degli Esposti, S. Graffi, and J. Herczinski, Ann. Phys. (N.Y.) 209, 364 (1991). These authors use a transformation based on a single exponential operator, rather than on a product of such operators, to reduce the pertinent Hamiltonian operators to normal form.
-
(1990)
Ann. Inst. Henri Poincaré
, vol.52
, pp. 175
-
-
Bellisard, J.1
Vittot, M.2
-
5
-
-
0010875651
-
-
These authors use a transformation based on a single exponential operator, rather than on a product of such operators, to reduce the pertinent Hamiltonian operators to normal form
-
This normal form approach differs from that used, e.g., by J. Bellisard and M. Vittot, Ann. Inst. Henri Poincaré 52, 175 (1990) and by M. Degli Esposti, S. Graffi, and J. Herczinski, Ann. Phys. (N.Y.) 209, 364 (1991). These authors use a transformation based on a single exponential operator, rather than on a product of such operators, to reduce the pertinent Hamiltonian operators to normal form.
-
(1991)
Ann. Phys. (N.Y.)
, vol.209
, pp. 364
-
-
Degli Esposti, M.1
Graffi, S.2
Herczinski, J.3
-
10
-
-
0038987645
-
-
Local and Global Methods of Nonlinear Dynamics, edited by A. W. Sáenz, W. W. Zachary, and R. Cawley Springer-Verlag, Berlin
-
J. M. Finn, in Local and Global Methods of Nonlinear Dynamics, Lecture Notes in Physics 252, edited by A. W. Sáenz, W. W. Zachary, and R. Cawley (Springer-Verlag, Berlin, 1986), p. 63.
-
(1986)
Lecture Notes in Physics
, vol.252
, pp. 63
-
-
Finn, J.M.1
-
11
-
-
84980077803
-
-
V. Bargmann, Commun. Pure Appl. Math. 14, 187 (1961); Proc. Natl. Acad. Sci. USA 48, 199 (1962); Commun. Pure Appl. Math. 26, 1 (1969).
-
(1961)
Commun. Pure Appl. Math.
, vol.14
, pp. 187
-
-
Bargmann, V.1
-
12
-
-
84980077803
-
-
V. Bargmann, Commun. Pure Appl. Math. 14, 187 (1961); Proc. Natl. Acad. Sci. USA 48, 199 (1962); Commun. Pure Appl. Math. 26, 1 (1969).
-
(1962)
Proc. Natl. Acad. Sci. USA
, vol.48
, pp. 199
-
-
-
13
-
-
84980077803
-
-
V. Bargmann, Commun. Pure Appl. Math. 14, 187 (1961); Proc. Natl. Acad. Sci. USA 48, 199 (1962); Commun. Pure Appl. Math. 26, 1 (1969).
-
(1969)
Commun. Pure Appl. Math.
, vol.26
, pp. 1
-
-
-
15
-
-
0038989378
-
-
Ph.D. thesis, University of Toledo, Toledo, OH
-
N. D. Antoniou, "On the convergence of perturbation theories that avoid secular terms in quantum mechanics," Ph.D. thesis, University of Toledo, Toledo, OH, 1972.
-
(1972)
On the Convergence of Perturbation Theories That Avoid Secular Terms in Quantum Mechanics
-
-
Antoniou, N.D.1
-
16
-
-
0040173554
-
-
Festschrift for A. W. Sáenz, edited by J. A. Ellison and H. Überall Gordon and Breach, Reading, PA
-
See, however, the interesting article by M. Kummer, in Essays in Classical and Quantum Mechanics (Festschrift for A. W. Sáenz), edited by J. A. Ellison and H. Überall (Gordon and Breach, Reading, PA, 1991), p. 139.
-
(1991)
Essays in Classical and Quantum Mechanics
, pp. 139
-
-
Kummer, M.1
-
18
-
-
0040877686
-
-
n1 ,....np→∞).
-
β〉." In Lemma A2, p. 2203, the condition f ∈. ℋ should read f ∈. ℋ.
-
(1997)
J. Math. Phys.
, vol.38
, pp. 4398
-
-
-
19
-
-
85033893220
-
-
note
-
Here and henceforth, all equations involving t (resp., ε) hold for t ∈ R (resp.. ε≥0). in the absence of an explicit statement to the contrary.
-
-
-
-
20
-
-
85033891789
-
-
note
-
The relevant definitions are given in Sec. III.
-
-
-
-
21
-
-
85033897461
-
-
note
-
+.
-
-
-
-
22
-
-
85033898451
-
-
note
-
The obvious formal power series defining the exponentials in (2.11) are analogous to the Lie series occurring in classical mechanics. See, e.g., Refs. 8 and 9.
-
-
-
-
23
-
-
0004021338
-
-
F. Ungar Publishing, New York, In the rigorous discussions in Sec. IV, we will avoid using formal power series
-
i (i≥=0) in the formal series on the Ihs is an extension of the corresponding coefficient on the rhs. For a review of formal power series with coefficients in ℐ(ℋ), based on the properties of the pseudo-algebra of unbounded linear operators, see Ref. 2, Chap. 1, Sec. 1.1. The basic rules of calculation with unbounded operators in Hilbert space are given, e.g., by F. Riesz B. Sz. Nagy, Functional Analysis (F. Ungar Publishing, New York, 1955), p. 299. In the rigorous discussions in Sec. IV, we will avoid using formal power series.
-
(1955)
Functional Analysis
, pp. 299
-
-
Riesz, F.1
Nagy, B.S.2
-
24
-
-
85033879862
-
-
note
-
(i).
-
-
-
-
25
-
-
0040283327
-
-
Academic, New York, Example 3
-
M. Reed and B. Simon, Methods of Mathematical Physics, Vol. II (Academic, New York, 1975), Example 3, p. 266.
-
(1975)
Methods of Mathematical Physics
, vol.2
, pp. 266
-
-
Reed, M.1
Simon, B.2
-
26
-
-
0002356196
-
-
See, for example, V. I. Arnold, Russ. Math. Surveys 18, 85 (1963) and G. Gallavotti, The Elements of Mechanics (Springer-Verlag, New York, 1983), Sec. 5.12.
-
(1963)
Russ. Math. Surveys
, vol.18
, pp. 85
-
-
Arnold, V.I.1
-
27
-
-
0003639298
-
-
Springer-Verlag, New York, Sec. 5.12
-
See, for example, V. I. Arnold, Russ. Math. Surveys 18, 85 (1963) and G. Gallavotti, The Elements of Mechanics (Springer-Verlag, New York, 1983), Sec. 5.12.
-
(1983)
The Elements of Mechanics
-
-
Gallavotti, G.1
-
29
-
-
85033880079
-
-
note
-
If A is an operator on ℋ, its domain is denoted by D(A) and its restriction to a subset ℒ⊂D(A) of ℋ by A|ℒ. If A,B are operators on ℋ, then we write A = B iff A and B have the same domain and range; we say that A = B on ℒ⊂. ℋ if ℒ⊂D(A)∩D(B) and A|ℒ=B|ℒ; and A⊂B (resp., A⊃B) means that A is a restriction (resp., an extension) of B.
-
-
-
-
30
-
-
85033899492
-
-
note
-
22 p. 201.
-
-
-
-
31
-
-
85033903231
-
-
note
-
mn), etc., will always be Ω, even if this is not stated explicitly.
-
-
-
-
32
-
-
0039691584
-
-
Linear Transformations in Hilbert Space, A.M.S., New York
-
M. H. Stone, Linear Transformations in Hilbert Space, A.M.S. Colloq. Pub., Vol. XV (A.M.S., New York, 1932), pp. 88-93.
-
(1932)
A.M.S. Colloq. Pub.
, vol.15
, pp. 88-93
-
-
Stone, M.H.1
-
33
-
-
0001906379
-
-
J. von Neumann, Math. Ann. 102, 49 (1929); J. f. Math. 161, 208 (1929).
-
(1929)
Math. Ann.
, vol.102
, pp. 49
-
-
Von Neumann, J.1
-
34
-
-
0010772787
-
-
J. von Neumann, Math. Ann. 102, 49 (1929); J. f. Math. 161, 208 (1929).
-
(1929)
J. F. Math.
, vol.161
, pp. 208
-
-
-
35
-
-
0003626943
-
-
Macmillan and Co., Ltd., London
-
See, for example, Ref. 28, p. 88 and R. G. Cooke, Infinite Matrices and Sequence Spaces (Macmillan and Co., Ltd., London, 1950), pp. 8-9.
-
(1950)
Infinite Matrices and Sequence Spaces
, pp. 8-9
-
-
Cooke, R.G.1
-
36
-
-
85033895635
-
-
note
-
0) invariant.
-
-
-
-
37
-
-
85033872858
-
-
note
-
The notations Lemma 2(2). Lemma 4(1), etc., denote assertion (2) of Lemma 2, assertion (1) of Lemma 4, etc. The lemmas cited in the text are those stated in Sec. IV of the present paper, unless a statement to the contrary is made.
-
-
-
-
38
-
-
85033903219
-
-
note
-
The symbol "const" appearing in a relation involving the unsummed indices m or n should be understood to be a constant which is independent of these indices.
-
-
-
-
39
-
-
85033899803
-
-
note
-
Whenever inequalities (3.4a) or (3.4b) are invoked in an argument in the text, allusion is being made to the fact that the entries of the matrix in ℳ considered in the argument satisfy an inequality of one of these respective forms.
-
-
-
-
40
-
-
85033887169
-
-
note
-
v) ∈Ω) are as specified in Definition 2.
-
-
-
-
41
-
-
85033892834
-
-
note
-
i.
-
-
-
-
42
-
-
85033901940
-
-
note
-
Recall that two algebras A,A′ over the same field F are isomorphic: if there exists a bijective map h:A→A′ such that h(ab) = h(a)h(b), h(a + b) = h(a) + h(b), and h(αa) = αh(a) for all a, b∈A and all α∈eF.
-
-
-
-
43
-
-
85033885788
-
-
note
-
(i) (i≥1) is self-adjoint.
-
-
-
-
44
-
-
85033874233
-
-
note
-
s)ℬ is hermitian.
-
-
-
-
45
-
-
0343786212
-
-
Academic, New York
-
See, for example, M. Reed and B. Simon, Methods of Modern Mathematical Physics, Vol. I, (Academic, New York, 1972), pp. 270, 271.
-
(1972)
Methods of Modern Mathematical Physics
, vol.1
, pp. 270
-
-
Reed, M.1
Simon, B.2
-
46
-
-
85033889551
-
-
note
-
n〉) ∈. ℋ.
-
-
-
|