메뉴 건너뛰기




Volumn 39, Issue 4, 1998, Pages 1887-1909

Lie-series approach to the evolution of resonant and nonresonant anharmonic oscillators in quantum mechanics

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0032371987     PISSN: 00222488     EISSN: None     Source Type: Journal    
DOI: 10.1063/1.532301     Document Type: Article
Times cited : (1)

References (47)
  • 4
    • 0003164337 scopus 로고
    • This normal form approach differs from that used, e.g., by J. Bellisard and M. Vittot, Ann. Inst. Henri Poincaré 52, 175 (1990) and by M. Degli Esposti, S. Graffi, and J. Herczinski, Ann. Phys. (N.Y.) 209, 364 (1991). These authors use a transformation based on a single exponential operator, rather than on a product of such operators, to reduce the pertinent Hamiltonian operators to normal form.
    • (1990) Ann. Inst. Henri Poincaré , vol.52 , pp. 175
    • Bellisard, J.1    Vittot, M.2
  • 5
    • 0010875651 scopus 로고
    • These authors use a transformation based on a single exponential operator, rather than on a product of such operators, to reduce the pertinent Hamiltonian operators to normal form
    • This normal form approach differs from that used, e.g., by J. Bellisard and M. Vittot, Ann. Inst. Henri Poincaré 52, 175 (1990) and by M. Degli Esposti, S. Graffi, and J. Herczinski, Ann. Phys. (N.Y.) 209, 364 (1991). These authors use a transformation based on a single exponential operator, rather than on a product of such operators, to reduce the pertinent Hamiltonian operators to normal form.
    • (1991) Ann. Phys. (N.Y.) , vol.209 , pp. 364
    • Degli Esposti, M.1    Graffi, S.2    Herczinski, J.3
  • 10
    • 0038987645 scopus 로고
    • Local and Global Methods of Nonlinear Dynamics, edited by A. W. Sáenz, W. W. Zachary, and R. Cawley Springer-Verlag, Berlin
    • J. M. Finn, in Local and Global Methods of Nonlinear Dynamics, Lecture Notes in Physics 252, edited by A. W. Sáenz, W. W. Zachary, and R. Cawley (Springer-Verlag, Berlin, 1986), p. 63.
    • (1986) Lecture Notes in Physics , vol.252 , pp. 63
    • Finn, J.M.1
  • 11
    • 84980077803 scopus 로고
    • V. Bargmann, Commun. Pure Appl. Math. 14, 187 (1961); Proc. Natl. Acad. Sci. USA 48, 199 (1962); Commun. Pure Appl. Math. 26, 1 (1969).
    • (1961) Commun. Pure Appl. Math. , vol.14 , pp. 187
    • Bargmann, V.1
  • 12
    • 84980077803 scopus 로고
    • V. Bargmann, Commun. Pure Appl. Math. 14, 187 (1961); Proc. Natl. Acad. Sci. USA 48, 199 (1962); Commun. Pure Appl. Math. 26, 1 (1969).
    • (1962) Proc. Natl. Acad. Sci. USA , vol.48 , pp. 199
  • 13
    • 84980077803 scopus 로고
    • V. Bargmann, Commun. Pure Appl. Math. 14, 187 (1961); Proc. Natl. Acad. Sci. USA 48, 199 (1962); Commun. Pure Appl. Math. 26, 1 (1969).
    • (1969) Commun. Pure Appl. Math. , vol.26 , pp. 1
  • 16
    • 0040173554 scopus 로고
    • Festschrift for A. W. Sáenz, edited by J. A. Ellison and H. Überall Gordon and Breach, Reading, PA
    • See, however, the interesting article by M. Kummer, in Essays in Classical and Quantum Mechanics (Festschrift for A. W. Sáenz), edited by J. A. Ellison and H. Überall (Gordon and Breach, Reading, PA, 1991), p. 139.
    • (1991) Essays in Classical and Quantum Mechanics , pp. 139
    • Kummer, M.1
  • 18
    • 0040877686 scopus 로고    scopus 로고
    • n1 ,....np→∞).
    • β〉." In Lemma A2, p. 2203, the condition f ∈. ℋ should read f ∈. ℋ.
    • (1997) J. Math. Phys. , vol.38 , pp. 4398
  • 19
    • 85033893220 scopus 로고    scopus 로고
    • note
    • Here and henceforth, all equations involving t (resp., ε) hold for t ∈ R (resp.. ε≥0). in the absence of an explicit statement to the contrary.
  • 20
    • 85033891789 scopus 로고    scopus 로고
    • note
    • The relevant definitions are given in Sec. III.
  • 21
    • 85033897461 scopus 로고    scopus 로고
    • note
    • +.
  • 22
    • 85033898451 scopus 로고    scopus 로고
    • note
    • The obvious formal power series defining the exponentials in (2.11) are analogous to the Lie series occurring in classical mechanics. See, e.g., Refs. 8 and 9.
  • 23
    • 0004021338 scopus 로고
    • F. Ungar Publishing, New York, In the rigorous discussions in Sec. IV, we will avoid using formal power series
    • i (i≥=0) in the formal series on the Ihs is an extension of the corresponding coefficient on the rhs. For a review of formal power series with coefficients in ℐ(ℋ), based on the properties of the pseudo-algebra of unbounded linear operators, see Ref. 2, Chap. 1, Sec. 1.1. The basic rules of calculation with unbounded operators in Hilbert space are given, e.g., by F. Riesz B. Sz. Nagy, Functional Analysis (F. Ungar Publishing, New York, 1955), p. 299. In the rigorous discussions in Sec. IV, we will avoid using formal power series.
    • (1955) Functional Analysis , pp. 299
    • Riesz, F.1    Nagy, B.S.2
  • 24
    • 85033879862 scopus 로고    scopus 로고
    • note
    • (i).
  • 26
    • 0002356196 scopus 로고
    • See, for example, V. I. Arnold, Russ. Math. Surveys 18, 85 (1963) and G. Gallavotti, The Elements of Mechanics (Springer-Verlag, New York, 1983), Sec. 5.12.
    • (1963) Russ. Math. Surveys , vol.18 , pp. 85
    • Arnold, V.I.1
  • 27
    • 0003639298 scopus 로고
    • Springer-Verlag, New York, Sec. 5.12
    • See, for example, V. I. Arnold, Russ. Math. Surveys 18, 85 (1963) and G. Gallavotti, The Elements of Mechanics (Springer-Verlag, New York, 1983), Sec. 5.12.
    • (1983) The Elements of Mechanics
    • Gallavotti, G.1
  • 29
    • 85033880079 scopus 로고    scopus 로고
    • note
    • If A is an operator on ℋ, its domain is denoted by D(A) and its restriction to a subset ℒ⊂D(A) of ℋ by A|ℒ. If A,B are operators on ℋ, then we write A = B iff A and B have the same domain and range; we say that A = B on ℒ⊂. ℋ if ℒ⊂D(A)∩D(B) and A|ℒ=B|ℒ; and A⊂B (resp., A⊃B) means that A is a restriction (resp., an extension) of B.
  • 30
    • 85033899492 scopus 로고    scopus 로고
    • note
    • 22 p. 201.
  • 31
    • 85033903231 scopus 로고    scopus 로고
    • note
    • mn), etc., will always be Ω, even if this is not stated explicitly.
  • 32
    • 0039691584 scopus 로고
    • Linear Transformations in Hilbert Space, A.M.S., New York
    • M. H. Stone, Linear Transformations in Hilbert Space, A.M.S. Colloq. Pub., Vol. XV (A.M.S., New York, 1932), pp. 88-93.
    • (1932) A.M.S. Colloq. Pub. , vol.15 , pp. 88-93
    • Stone, M.H.1
  • 33
    • 0001906379 scopus 로고
    • J. von Neumann, Math. Ann. 102, 49 (1929); J. f. Math. 161, 208 (1929).
    • (1929) Math. Ann. , vol.102 , pp. 49
    • Von Neumann, J.1
  • 34
    • 0010772787 scopus 로고
    • J. von Neumann, Math. Ann. 102, 49 (1929); J. f. Math. 161, 208 (1929).
    • (1929) J. F. Math. , vol.161 , pp. 208
  • 35
    • 0003626943 scopus 로고
    • Macmillan and Co., Ltd., London
    • See, for example, Ref. 28, p. 88 and R. G. Cooke, Infinite Matrices and Sequence Spaces (Macmillan and Co., Ltd., London, 1950), pp. 8-9.
    • (1950) Infinite Matrices and Sequence Spaces , pp. 8-9
    • Cooke, R.G.1
  • 36
    • 85033895635 scopus 로고    scopus 로고
    • note
    • 0) invariant.
  • 37
    • 85033872858 scopus 로고    scopus 로고
    • note
    • The notations Lemma 2(2). Lemma 4(1), etc., denote assertion (2) of Lemma 2, assertion (1) of Lemma 4, etc. The lemmas cited in the text are those stated in Sec. IV of the present paper, unless a statement to the contrary is made.
  • 38
    • 85033903219 scopus 로고    scopus 로고
    • note
    • The symbol "const" appearing in a relation involving the unsummed indices m or n should be understood to be a constant which is independent of these indices.
  • 39
    • 85033899803 scopus 로고    scopus 로고
    • note
    • Whenever inequalities (3.4a) or (3.4b) are invoked in an argument in the text, allusion is being made to the fact that the entries of the matrix in ℳ considered in the argument satisfy an inequality of one of these respective forms.
  • 40
    • 85033887169 scopus 로고    scopus 로고
    • note
    • v) ∈Ω) are as specified in Definition 2.
  • 41
    • 85033892834 scopus 로고    scopus 로고
    • note
    • i.
  • 42
    • 85033901940 scopus 로고    scopus 로고
    • note
    • Recall that two algebras A,A′ over the same field F are isomorphic: if there exists a bijective map h:A→A′ such that h(ab) = h(a)h(b), h(a + b) = h(a) + h(b), and h(αa) = αh(a) for all a, b∈A and all α∈eF.
  • 43
    • 85033885788 scopus 로고    scopus 로고
    • note
    • (i) (i≥1) is self-adjoint.
  • 44
    • 85033874233 scopus 로고    scopus 로고
    • note
    • s)ℬ is hermitian.
  • 46
    • 85033889551 scopus 로고    scopus 로고
    • note
    • n〉) ∈. ℋ.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.