-
1
-
-
0031371586
-
Of stable marriages and graphs, and strategy and polytopes
-
Balinski, Michel and Guillaume Ratier, Of stable marriages and graphs, and strategy and polytopes, SIAM Review 39 (1997) 575-604.
-
(1997)
SIAM Review
, vol.39
, pp. 575-604
-
-
Balinski, M.1
Ratier, G.2
-
2
-
-
0039439360
-
How do i marry thee ? Let me count the ways
-
Benjamin, Arthur T., Cherlyn Converse, and Henry A. Krieger, How do I marry thee ? Let me count the ways, Discrete Appl. Math. 59 (1995) 285-292.
-
(1995)
Discrete Appl. Math.
, vol.59
, pp. 285-292
-
-
Benjamin, A.T.1
Converse, C.2
Krieger, H.A.3
-
3
-
-
0040624708
-
Every finite distributive lattice is a set of stable matchings
-
Blair, Charles, Every finite distributive lattice is a set of stable matchings, .J. of Combin. Theory (Series A) 37 (1984) 353-356.
-
(1984)
J. of Combin. Theory (Series A)
, vol.37
, pp. 353-356
-
-
Blair, C.1
-
4
-
-
0001755242
-
Machiavelli and the Gale-Shapley algorithm
-
Dubins, L. E., and D. A. Freedman, Machiavelli and the Gale-Shapley algorithm, Amer. Math. Monthly 88 (1981) 485-494.
-
(1981)
Amer. Math. Monthly
, vol.88
, pp. 485-494
-
-
Dubins, L.E.1
Freedman, D.A.2
-
5
-
-
0003165311
-
College admissions and the stability of marriage
-
Gale, D. and L. S. Shapley, College admissions and the stability of marriage, Amer. Math. Monthly 69 (1962) 9-15.
-
(1962)
Amer. Math. Monthly
, vol.69
, pp. 9-15
-
-
Gale, D.1
Shapley, L.S.2
-
6
-
-
0022092663
-
Some remarks on the stable matching problem
-
Gale, David, and Marilda Sotomayor, Some remarks on the stable matching problem, Discrete Appl. Math. 11 (1985) 223-232.
-
(1985)
Discrete Appl. Math.
, vol.11
, pp. 223-232
-
-
Gale, D.1
Sotomayor, M.2
-
8
-
-
38249033612
-
Every finite distributive lattice is a set of stable matchings for a small stable marriage instance
-
Gusfield, Dan, Robert Irving, Paul Leather, and Michael Saks, Every finite distributive lattice is a set of stable matchings for a small stable marriage instance, J. of Combin. Theory (Series A) 44 (1987) 304-309.
-
(1987)
J. of Combin. Theory (Series A)
, vol.44
, pp. 304-309
-
-
Gusfield, D.1
Irving, R.2
Leather, P.3
Saks, M.4
-
11
-
-
0000782216
-
Stable marriage assignments for unequal sets
-
McVitie, D. G., and L. B. Wilson, Stable marriage assignments for unequal sets, BIT 10 (1970) 259-309.
-
(1970)
BIT
, vol.10
, pp. 259-309
-
-
McVitie, D.G.1
Wilson, L.B.2
-
12
-
-
0001646521
-
Sorority rush as a two-sided matching mechanism
-
Mongell, Susan J., and Alvin E. Roth, Sorority rush as a two-sided matching mechanism, Amer. Econ. Review 81 (1991) 441-464.
-
(1991)
Amer. Econ. Review
, vol.81
, pp. 441-464
-
-
Mongell, S.J.1
Roth, A.E.2
-
13
-
-
85033304589
-
On the stable marriage polytope
-
Ratier, Guillaume, On the stable marriage polytope, to appear in Discrete Math.
-
Discrete Math
-
-
Ratier, G.1
-
14
-
-
0026168283
-
A natural experiment in the organization of entry level labor markets: Regional markets for new physicians and surgeons in the U.K
-
Roth, Alvin E., A natural experiment in the organization of entry level labor markets: regional markets for new physicians and surgeons in the U.K., Amer. Econ. Review 81 (1991) 415-440.
-
(1991)
Amer. Econ. Review
, vol.81
, pp. 415-440
-
-
Roth, A.E.1
-
15
-
-
0008667099
-
Stable matchings, optimal assignments, and linear programming
-
Roth, Alvin E., Uriel G. Rothblum, and John H. Vande Vate, Stable matchings, optimal assignments, and linear programming, Math. Oper. Res. 18 (1993) 803-828.
-
(1993)
Math. Oper. Res.
, vol.18
, pp. 803-828
-
-
Roth, A.E.1
Rothblum, U.G.2
Vate, J.H.V.3
-
17
-
-
0026810076
-
Characterization of stable matchings as extreme points of a polytope
-
Rothblum, Uriel. Characterization of stable matchings as extreme points of a polytope, Math. Programming 54 (1992) 57-67.
-
(1992)
Math. Programming
, vol.54
, pp. 57-67
-
-
Rothblum, U.1
-
18
-
-
0024683522
-
Linear programming brings marital bliss
-
Vande Vate, John H., Linear programming brings marital bliss, Oper. Res. Lett. 8 (1989) 147-153.
-
(1989)
Oper. Res. Lett.
, vol.8
, pp. 147-153
-
-
Vande Vate, J.H.1
|