-
3
-
-
0001306605
-
Stability theory for an extensible beam
-
J.M. Ball, Stability theory for an extensible beam, J. Diff. Eqns., 14 (1973), 399-418.
-
(1973)
J. Diff. Eqns.
, vol.14
, pp. 399-418
-
-
Ball, J.M.1
-
4
-
-
0000262385
-
On the asymptotic behavior of generalized processes, with applications to nonlinear evolution equations
-
J.M. Ball, On the asymptotic behavior of generalized processes, with applications to nonlinear evolution equations, J. Diff. Eqns., 27 (1978), 224-265.
-
(1978)
J. Diff. Eqns.
, vol.27
, pp. 224-265
-
-
Ball, J.M.1
-
5
-
-
0018697593
-
Feedback stabilization of distributed semilinear control systems
-
J.M. Ball and M. Slemrod, Feedback stabilization of distributed semilinear control systems, Appl. Math. Optim., 5 (1979), 169-179.
-
(1979)
Appl. Math. Optim.
, vol.5
, pp. 169-179
-
-
Ball, J.M.1
Slemrod, M.2
-
6
-
-
0004152738
-
Nonautonomous evolution equations and their attractors
-
V.V. Chepyzhov and M.I. Vishik, Nonautonomous evolution equations and their attractors, Russian J. Math. Phys., 1 (1993), 165-190.
-
(1993)
Russian J. Math. Phys.
, vol.1
, pp. 165-190
-
-
Chepyzhov, V.V.1
Vishik, M.I.2
-
7
-
-
0001530660
-
Attractors of non-autonomous dynamical systems and their dimension
-
V.V. Chepyzhov and M.I. Vishik, Attractors of non-autonomous dynamical systems and their dimension, J. Math. Pures Appl., 73 (1994), 279-333.
-
(1994)
J. Math. Pures Appl.
, vol.73
, pp. 279-333
-
-
Chepyzhov, V.V.1
Vishik, M.I.2
-
8
-
-
0000754878
-
Non-autonomous evolutionary equations with translation compact symbols and their attractors
-
V. V. Chepyzhov and M.I. Vishik, Non-autonomous evolutionary equations with translation compact symbols and their attractors, C. R. Acad. Sci. Paris Sér. I Math., 321 (1995), 153-158.
-
(1995)
C. R. Acad. Sci. Paris Sér. I Math.
, vol.321
, pp. 153-158
-
-
Chepyzhov, V.V.1
Vishik, M.I.2
-
9
-
-
0000271110
-
An invariance principle for compact processes
-
C.M. Dafermos, An invariance principle for compact processes, J. Diff. Eqns., 9 (1971), 235-252.
-
(1971)
J. Diff. Eqns.
, vol.9
, pp. 235-252
-
-
Dafermos, C.M.1
-
10
-
-
3042889605
-
Applications of the invariance principle for compact processes. I. Asymptotically dynamical systems
-
C.M. Dafermos, Applications of the invariance principle for compact processes. I. Asymptotically dynamical systems, J. Diff. Eqns., 9 (1971), 291-299.
-
(1971)
J. Diff. Eqns.
, vol.9
, pp. 291-299
-
-
Dafermos, C.M.1
-
11
-
-
3043006890
-
An attractor for a 3D Navier-Stokes type equation
-
F. Gazzola, An attractor for a 3D Navier-Stokes type equation, Zeit. Anal. Anwend., 14 (1995), 509-522.
-
(1995)
Zeit. Anal. Anwend.
, vol.14
, pp. 509-522
-
-
Gazzola, F.1
-
12
-
-
21744459106
-
A uniform attractor for a nonautonomous generalized Navier-Stokes equation
-
F. Gazzola and V. Pata, A uniform attractor for a nonautonomous generalized Navier-Stokes equation, Zeit. Anal. Anwend., 16 (1997), 435-449.
-
(1997)
Zeit. Anal. Anwend.
, vol.16
, pp. 435-449
-
-
Gazzola, F.1
Pata, V.2
-
13
-
-
0000616385
-
Weakly damped forced Korteweg-de Vries equations behave as a finite dimensional dynamical system in the long time
-
J.M. Ghidaglia, Weakly damped forced Korteweg-de Vries equations behave as a finite dimensional dynamical system in the long time, J. Diff. Eqns., 74 (1988), 369-390.
-
(1988)
J. Diff. Eqns.
, vol.74
, pp. 369-390
-
-
Ghidaglia, J.M.1
-
14
-
-
0001005263
-
A note on the strong convergence towards attractors of damped forced KdV equations
-
J.M. Ghidaglia, A note on the strong convergence towards attractors of damped forced KdV equations, J. Diff. Eqns., 110 (1994), 356-359.
-
(1994)
J. Diff. Eqns.
, vol.110
, pp. 356-359
-
-
Ghidaglia, J.M.1
-
15
-
-
0030637309
-
On the connectedness of attractors for dynamical systems
-
M. Gobbino and M. Sardella, On the connectedness of attractors for dynamical systems, J. Diff. Eqns., 133 (1997), 1-14.
-
(1997)
J. Diff. Eqns.
, vol.133
, pp. 1-14
-
-
Gobbino, M.1
Sardella, M.2
-
16
-
-
0003293929
-
Asymptotic Behavior of Dissipative Systems
-
AMS
-
J.K. Hale, "Asymptotic Behavior of Dissipative Systems," Math. Surv. Monog., vol. 25, AMS, 1988.
-
(1988)
Math. Surv. Monog.
, vol.25
-
-
Hale, J.K.1
-
17
-
-
0013414545
-
Compact attractors for weak dynamical systems
-
J.K. Hale and N. Stavrakakis, Compact attractors for weak dynamical systems, Appl. Anal., 26 (1988), 271-287.
-
(1988)
Appl. Anal.
, vol.26
, pp. 271-287
-
-
Hale, J.K.1
Stavrakakis, N.2
-
19
-
-
84971178675
-
Asymptotic behaviour of weak solutions to a boundary value problem for dynamic viscoelastic equations with memory
-
Jin Liang and Qin Tiehu, Asymptotic behaviour of weak solutions to a boundary value problem for dynamic viscoelastic equations with memory, Proc. Roy. Soc. Edinburgh, 125 (A) (1995), 153-164.
-
(1995)
Proc. Roy. Soc. Edinburgh
, vol.125
, Issue.A
, pp. 153-164
-
-
Liang, J.1
Tiehu, Q.2
-
20
-
-
0002535695
-
Attractors for fully nonlinear parabolic equations of second order
-
O.A. Ladyzhenskaya, Attractors for fully nonlinear parabolic equations of second order, Rend. Mat. Serie VII, 10 (1990), 749-756.
-
(1990)
Rend. Mat. Serie VII
, vol.10
, pp. 749-756
-
-
Ladyzhenskaya, O.A.1
-
22
-
-
3042969918
-
On a Navier-Stokes type equation
-
Ed. A. Ambrosetti and A. Marino, Quaderni Sc. Norm. Sup. Pisa
-
G. Prouse, On a Navier-Stokes type equation in "Nonlinear Analysis: a tribute in honour of Giovanni Prodi," (Ed. A. Ambrosetti and A. Marino), Quaderni Sc. Norm. Sup. Pisa, 1991, 289-305.
-
(1991)
Nonlinear Analysis: A Tribute in Honour of Giovanni Prodi
, pp. 289-305
-
-
Prouse, G.1
-
23
-
-
84968510092
-
Nonautonomous differential equations and topological dynamics I, II
-
G.R. Sell, Nonautonomous differential equations and topological dynamics I, II, Trans. Amer. Math. Soc., 127 (1967), 241-262; 263-283.
-
(1967)
Trans. Amer. Math. Soc.
, vol.127
, pp. 241-262
-
-
Sell, G.R.1
-
24
-
-
0000729948
-
Asymptotic behavior of a class of abstract dynamical systems
-
M. Slemrod, Asymptotic behavior of a class of abstract dynamical systems, J. Diff. Eqns., 7 (1970), 584-600.
-
(1970)
J. Diff. Eqns.
, vol.7
, pp. 584-600
-
-
Slemrod, M.1
|