메뉴 건너뛰기




Volumn 96, Issue 2, 1998, Pages 337-362

On some properties of generalized proximal point methods for variational inequalities

(1)  Iusem, A N a  

a IMPA   (Brazil)

Author keywords

generalized distances; interior point methods; linear complementarity problems; nonlinear complementarity problems; Proximal point methods; variational inequalities

Indexed keywords

GEOMETRY; MATHEMATICAL OPERATORS; NONLINEAR PROGRAMMING; VARIATIONAL TECHNIQUES;

EID: 0032364974     PISSN: 00223239     EISSN: None     Source Type: Journal    
DOI: 10.1023/A:1022670114963     Document Type: Article
Times cited : (14)

References (17)
  • 2
    • 0032351233 scopus 로고    scopus 로고
    • A Generalized Proximal Point Algorithm for the Variational Inequality Problem in a Hilbert Space
    • to appear
    • BURACHIK, R., and IUSEM, A. N., A Generalized Proximal Point Algorithm for the Variational Inequality Problem in a Hilbert Space, SIAM Journal on Optimization (to appear).
    • SIAM Journal on Optimization
    • Burachik, R.1    Iusem, A.N.2
  • 3
    • 0016985417 scopus 로고
    • Monotone Operators and the Proximal Point Algorithm
    • ROCKAFELLAR, R. T., Monotone Operators and the Proximal Point Algorithm, SIAM Journal on Control and Optimization, Vol. 14, pp. 877-898, 1976.
    • (1976) SIAM Journal on Control and Optimization , vol.14 , pp. 877-898
    • Rockafellar, R.T.1
  • 4
    • 34249754438 scopus 로고
    • On Some Properties of Generalized Proximal Point Methods for Quadratic and Linear Programming
    • IUSEM, A. N., On Some Properties of Generalized Proximal Point Methods for Quadratic and Linear Programming, Journal of Optimization Theory and Applications, Vol. 85, pp. 593-612, 1995.
    • (1995) Journal of Optimization Theory and Applications , vol.85 , pp. 593-612
    • Iusem, A.N.1
  • 5
    • 49949144765 scopus 로고
    • The Relaxation Method for Finding the Common Point of Convex Sets and Its Application to the Solution of Problems in Convex Programming
    • BREGMAN, L., The Relaxation Method for Finding the Common Point of Convex Sets and Its Application to the Solution of Problems in Convex Programming, USSR Computational Mathematics and Mathematical Physics, Vol. 7, pp. 200-217, 1967.
    • (1967) USSR Computational Mathematics and Mathematical Physics , vol.7 , pp. 200-217
    • Bregman, L.1
  • 9
    • 10344249592 scopus 로고    scopus 로고
    • Technical Report B-101, Institute de Matemática Pura e Aplicada, Rio de Janeiro, RJ, Brazil
    • IUSEM, A. N., On Some Properties of Paramonotone Operators, Technical Report B-101, Institute de Matemática Pura e Aplicada, Rio de Janeiro, RJ, Brazil, 1996.
    • (1996) On Some Properties of Paramonotone Operators
    • Iusem, A.N.1
  • 11
    • 0000433247 scopus 로고
    • Convergence Analysis of a Proximal-Like Minimization Algorithm Using Bregman Functions
    • CHEN, G., and TEBOULLE, M., Convergence Analysis of a Proximal-Like Minimization Algorithm Using Bregman Functions, SIAM Journal on Optimization, Vol. 3, pp. 538-543, 1993.
    • (1993) SIAM Journal on Optimization , vol.3 , pp. 538-543
    • Chen, G.1    Teboulle, M.2
  • 12
    • 0001702688 scopus 로고
    • Nonlinear Proximal Point Algorithms Using Bregman Functions, with Applications to Convex Programming
    • ECKSTEIN, J., Nonlinear Proximal Point Algorithms Using Bregman Functions, with Applications to Convex Programming, Mathematics of Operations Research, Vol. 18, pp. 202-226, 1993.
    • (1993) Mathematics of Operations Research , vol.18 , pp. 202-226
    • Eckstein, J.1
  • 17
    • 0000019392 scopus 로고
    • Convergence Rate Analysis of Nonquadratic Proximal Methods for Convex and Linear Programming
    • IUSEM, A. N., and TEBOULLE, M., Convergence Rate Analysis of Nonquadratic Proximal Methods for Convex and Linear Programming, Mathematics of Operations Research, Vol. 20, pp. 657-677, 1995.
    • (1995) Mathematics of Operations Research , vol.20 , pp. 657-677
    • Iusem, A.N.1    Teboulle, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.