메뉴 건너뛰기




Volumn 144, Issue 2, 1998, Pages 107-120

Existence of minimizers for a variational problem in two-dimensional nonlinear magnetoelasticity

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0032359417     PISSN: 00039527     EISSN: None     Source Type: Journal    
DOI: 10.1007/s002050050114     Document Type: Article
Times cited : (25)

References (16)
  • 1
    • 33750297145 scopus 로고
    • Fine phase mixtures as minimizers of energy
    • J. M. BALL & R. D. JAMES, Fine phase mixtures as minimizers of energy. Arch. Rational Mech. Analysis 100, 13-52, 1987.
    • (1987) Arch. Rational Mech. Analysis , vol.100 , pp. 13-52
    • Ball, J.M.1    James, R.D.2
  • 2
    • 0002854369 scopus 로고
    • Proposed experimental tests of a theory of fine microstructure and the two-well problem
    • J. M. BALL & R. D. JAMES, Proposed experimental tests of a theory of fine microstructure and the two-well problem. Phil. Trans. R. Soc. London A 338, 389-450, 1992.
    • (1992) Phil. Trans. R. Soc. London A , vol.338 , pp. 389-450
    • Ball, J.M.1    James, R.D.2
  • 4
    • 0001090953 scopus 로고
    • On a problem of potential wells
    • A. CELLINA & S. PERROTTA, On a problem of potential wells, J. Convex Analysis 2, 103-116, 1995.
    • (1995) J. Convex Analysis , vol.2 , pp. 103-116
    • Cellina, A.1    Perrotta, S.2
  • 6
    • 0001433599 scopus 로고    scopus 로고
    • Théorèmes d'existence dans les cas scalaire et vectoriel pour les équations de Hamilton-Jacobi
    • B. DACOROGNA & P. MARCELLINI, Théorèmes d'existence dans les cas scalaire et vectoriel pour les équations de Hamilton-Jacobi. C. R. Acad. Sci. Paris 322, 237-240, 1996.
    • (1996) C. R. Acad. Sci. Paris , vol.322 , pp. 237-240
    • Dacorogna, B.1    Marcellini, P.2
  • 7
    • 0001167501 scopus 로고    scopus 로고
    • Sur le problème de Cauchy-Dirichlet pour les systèmes d'équations non linéaires du premier ordre
    • B. DACOROGNA & P. MARCELLINI, Sur le problème de Cauchy-Dirichlet pour les systèmes d'équations non linéaires du premier ordre. C. R. Acad. Sci. Paris 323, 599-602, 1996.
    • (1996) C. R. Acad. Sci. Paris , vol.323 , pp. 599-602
    • Dacorogna, B.1    Marcellini, P.2
  • 8
    • 21844510408 scopus 로고
    • Microstructures with finite surface energy: The two-well problem
    • G. DOLZMANN & S. MÜLLER, Microstructures with finite surface energy: the two-well problem. Arch. Rational Mech. Anal. 132, 101-141, 1995.
    • (1995) Arch. Rational Mech. Anal. , vol.132 , pp. 101-141
    • Dolzmann, G.1    Müller, S.2
  • 12
    • 84953602308 scopus 로고
    • Branching of twins near an austenite twinned-martensite interface
    • R.V. KOHN & S. MÜLLER, Branching of twins near an austenite twinned-martensite interface. Phil. Mag. A 66, 697-715, 1992.
    • (1992) Phil. Mag. A , vol.66 , pp. 697-715
    • Kohn, R.V.1    Müller, S.2
  • 13
    • 0001139965 scopus 로고
    • Characterization of young measures generated by gradients
    • D. KINDERLEHRER & P. PEDREGAL, Characterization of Young measures generated by gradients, Arch. Rational Mech. Anal. 115, 329-365, 1994.
    • (1994) Arch. Rational Mech. Anal. , vol.115 , pp. 329-365
    • Kinderlehrer, D.1    Pedregal, P.2
  • 14
    • 0001309171 scopus 로고    scopus 로고
    • Attainment results for the two-well problem by convex integration
    • J. JOST (ed.). International Press
    • S. MÜLLER & V. ŠVERÁK, Attainment results for the two-well problem by convex integration. In: Geometric Analysis and the Calculus of Variations, J. JOST (ed.). International Press, 1996.
    • (1996) Geometric Analysis and the Calculus of Variations
    • Müller, S.1    Šverák, V.2
  • 16
    • 0001682439 scopus 로고
    • On the problem of two wells
    • IMA Vols. Appl. Math. no. 54, D. KINDERLEHRER et al. (eds.). Springer
    • V. ŠVERÁK, On the problem of two wells. In: Microstructure and phase transitions, IMA Vols. Appl. Math. no. 54, D. KINDERLEHRER et al. (eds.). Springer, 1994.
    • (1994) Microstructure and Phase Transitions
    • Šverák, V.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.