-
2
-
-
0010070960
-
The choice of the degree of a polynomial regression as a multiple decision problem
-
ANDERSON, T. W. (1962). The choice of the degree of a polynomial regression as a multiple decision problem. Ann. Math. Statist. 33 255-265.
-
(1962)
Ann. Math. Statist.
, vol.33
, pp. 255-265
-
-
Anderson, T.W.1
-
4
-
-
0000322393
-
Planning experiments to detect inadequate regression models
-
ATKINSON, A. C. (1972). Planning experiments to detect inadequate regression models. Biometrika 59 275-293.
-
(1972)
Biometrika
, vol.59
, pp. 275-293
-
-
Atkinson, A.C.1
-
5
-
-
0001376599
-
Planning experiments for discriminating between models
-
ATKINSON, A. C. and Cox, D. R. (1974). Planning experiments for discriminating between models (with discussion). J. Roy. Statist. Soc. Ser. B 36 321-348.
-
(1974)
J. Roy. Statist. Soc. Ser. B
, vol.36
, pp. 321-348
-
-
Atkinson, A.C.1
Cox, D.R.2
-
7
-
-
21844496670
-
Discrimination designs for polynomial regression on a compact interval
-
DETTE, H. (1994). Discrimination designs for polynomial regression on a compact interval. Ann. Statist. 22 890-904.
-
(1994)
Ann. Statist.
, vol.22
, pp. 890-904
-
-
Dette, H.1
-
8
-
-
21844516944
-
Optimal designs for identifying the degree of a polynomial regression
-
DETTE, H. (1995). Optimal designs for identifying the degree of a polynomial regression. Ann. Statist. 23 1248-1267.
-
(1995)
Ann. Statist.
, vol.23
, pp. 1248-1267
-
-
Dette, H.1
-
11
-
-
0018163411
-
A note on the equivalence of D-optimal design measures for three rival linear models
-
HILL, P. D. H. (1978). A note on the equivalence of D-optimal design measures for three rival linear models. Biometrika 65 666-667.
-
(1978)
Biometrika
, vol.65
, pp. 666-667
-
-
Hill, P.D.H.1
-
12
-
-
0001580520
-
Minimax designs in two-dimensional regression
-
HOEL, P. G. (1965). Minimax designs in two-dimensional regression. Ann. Math. Statist. 36 1097-1106.
-
(1965)
Ann. Math. Statist.
, vol.36
, pp. 1097-1106
-
-
Hoel, P.G.1
-
14
-
-
0000981128
-
General equivalence theory for optimum designs
-
KIEFER, J. C. (1974). General equivalence theory for optimum designs. Ann. Statist. 2 849-879.
-
(1974)
Ann. Statist.
, vol.2
, pp. 849-879
-
-
Kiefer, J.C.1
-
15
-
-
0043086147
-
Theory of canonical moments and its applications in polynomial regression I, II
-
Purdue Univ.
-
LAU, T. S. (1983). Theory of canonical moments and its applications in polynomial regression I, II. Technical Reports 83-23, 83-24, Purdue Univ.
-
(1983)
Technical Reports 83-23, 83-24
-
-
Lau, T.S.1
-
16
-
-
0003141877
-
D-optimal designs on the unit q-ball
-
LAU, T. S. (1988). D-optimal designs on the unit q-ball. J. Statist. Plann. Inference 19 299-315.
-
(1988)
J. Statist. Plann. Inference
, vol.19
, pp. 299-315
-
-
Lau, T.S.1
-
17
-
-
0000823651
-
Optimal designs for trigonometric and polynomial regression
-
LAU, T. S. and STUDDEN, W. J. (1985). Optimal designs for trigonometric and polynomial regression. Ann. Statist. 13 383-394.
-
(1985)
Ann. Statist.
, vol.13
, pp. 383-394
-
-
Lau, T.S.1
Studden, W.J.2
-
20
-
-
0031325672
-
Lattice-based D-optimum design for Fourier regression
-
RICCOMAGNO, E., SCHWABE, R., and WYNN, H. P. (1997). Lattice-based D-optimum design for Fourier regression. Ann. Statist. 25 2313-2327
-
(1997)
Ann. Statist.
, vol.25
, pp. 2313-2327
-
-
Riccomagno, E.1
Schwabe, R.2
Wynn, H.P.3
-
22
-
-
0000819909
-
The range of the (n + 1)th moment for distributions on [0, 1]
-
SKIBINSKY, M. (1967). The range of the (n + 1)th moment for distributions on [0, 1]. J. Appl. Probab. 4 543-552.
-
(1967)
J. Appl. Probab.
, vol.4
, pp. 543-552
-
-
Skibinsky, M.1
-
23
-
-
0006060214
-
Some striking properties of binomial and beta moments
-
SKIBINSKY, M. (1969). Some striking properties of binomial and beta moments. Ann. Math. Stast. 40 1753-1764.
-
(1969)
Ann. Math. Stast.
, vol.40
, pp. 1753-1764
-
-
Skibinsky, M.1
-
24
-
-
38249040783
-
Principal representations and canonical moment sequences for distributions on an interval
-
SKIBINSKY, M. (1986). Principal representations and canonical moment sequences for distributions on an interval. J Math. Anal. Appl. 120 95-120.
-
(1986)
J Math. Anal. Appl.
, vol.120
, pp. 95-120
-
-
Skibinsky, M.1
-
25
-
-
0039608905
-
Good designs for testing the degree of a polynomial mean
-
SPRUILL, M. G. (1990). Good designs for testing the degree of a polynomial mean. Sankhyā Ser. B 52 67-74.
-
(1990)
Sankhyā Ser. B
, vol.52
, pp. 67-74
-
-
Spruill, M.G.1
-
26
-
-
0001461163
-
Optimal designs on Chebshev points
-
STUDDEN, W. J. (1968). Optimal designs on Chebshev points. Ann. Math. Statist. 39 1435-1447.
-
(1968)
Ann. Math. Statist.
, vol.39
, pp. 1435-1447
-
-
Studden, W.J.1
-
27
-
-
0000135813
-
s-optimal designs for polynomial regression using continued fractions
-
s-optimal designs for polynomial regression using continued fractions. Ann. Statist. 8 1132-1141.
-
(1980)
Ann. Statist.
, vol.8
, pp. 1132-1141
-
-
Studden, W.J.1
-
28
-
-
0000536027
-
Some robust-type D-optimal designs in polynomial regression
-
STUDDEN, W. J. (1982a). Some robust-type D-optimal designs in polynomial regression. J. Amer. Statist. Assoc. 77 916-921.
-
(1982)
J. Amer. Statist. Assoc.
, vol.77
, pp. 916-921
-
-
Studden, W.J.1
-
29
-
-
0000685915
-
Optimal designs for weighted polynomial regression using canonical moments
-
S. S. Gupta and J. O. Berger, eds. Academic, New York
-
STUDDEN, W. J. (1982b). Optimal designs for weighted polynomial regression using canonical moments. In Statistical Decision Theory and Related Topics 3 (S. S. Gupta and J. O. Berger, eds.) 335-350. Academic, New York.
-
(1982)
Statistical Decision Theory and Related Topics 3
, pp. 335-350
-
-
Studden, W.J.1
-
30
-
-
0002313503
-
p-optimal design for polynomial regression
-
p-optimal design for polynomial regression. Ann. Statist. 17 618-623.
-
(1989)
Ann. Statist.
, vol.17
, pp. 618-623
-
-
Studden, W.J.1
|