-
1
-
-
0030504974
-
Master equation based formulation of non-equilibrium statistical mechanics
-
B. Gaveau and L. S. Schulman, "Master equation based formulation of non-equilibrium statistical mechanics," J. Math. Phys. 37, 3897-3932 (1996).
-
(1996)
J. Math. Phys.
, vol.37
, pp. 3897-3932
-
-
Gaveau, B.1
Schulman, L.S.2
-
2
-
-
0042974185
-
A general framework for non-equilibrium phenomena: The master equation and its formal consequences
-
B. Gaveau and L. S. Schulman, "A general framework for non-equilibrium phenomena: The master equation and its formal consequences," Phys. Lett. A 229, 347-353 (1997).
-
(1997)
Phys. Lett. A
, vol.229
, pp. 347-353
-
-
Gaveau, B.1
Schulman, L.S.2
-
3
-
-
0021187917
-
Metastability and analyticity in a Droplet-like model
-
G. Roepstorff and L. S. Schulman, "Metastability and Analyticity in a Droplet-like model," J. Stat. Phys. 34, 35-56 (1984).
-
(1984)
J. Stat. Phys.
, vol.34
, pp. 35-56
-
-
Roepstorff, G.1
Schulman, L.S.2
-
4
-
-
0000941643
-
Nonanalytic features of the first order phase transition in the Ising model
-
S. N. Isakov, "Nonanalytic Features of the First Order Phase Transition in the Ising Model," Commun. Math. Phys. 95, 427-443 (1984).
-
(1984)
Commun. Math. Phys.
, vol.95
, pp. 427-443
-
-
Isakov, S.N.1
-
5
-
-
0010854885
-
Rapidly mixing Markov chains
-
American Mathematical Society, Providence
-
U. Vazirani, "Rapidly Mixing Markov Chains," in Proc. Symposia in Appl. Math. (American Mathematical Society, Providence, 1991), Vol. 44, pp. 99-121.
-
(1991)
Proc. Symposia in Appl. Math.
, vol.44
, pp. 99-121
-
-
Vazirani, U.1
-
7
-
-
33645211402
-
Toward a unified view on mathematical theories of phase transitions
-
edited by E. G. D. Cohen North-Holland, Amsterdam
-
M. Kac, "Toward a Unified View on Mathematical Theories of Phase Transitions," in Fundamental Problems in Statistical Mechanics II, edited by E. G. D. Cohen (North-Holland, Amsterdam, 1968), pp. 71-105.
-
Fundamental Problems in Statistical Mechanics II
, vol.1968
, pp. 71-105
-
-
Kac, M.1
-
8
-
-
0001502537
-
Mathematical mechanisms of phase transitions
-
edited by M. Chretien, E. P. Gross, and S. Deser, Brandeis Summer Institute in Theoretical Physics, 1966, Gordon and Breach, New York
-
M. Kac, "Mathematical Mechanisms of Phase Transitions," in Statistical Physics: Phase Transitions and Superfluidity, edited by M. Chretien, E. P. Gross, and S. Deser, Brandeis Summer Institute in Theoretical Physics, 1966, Vol. 1 (Gordon and Breach, New York, 1966), pp. 242-305.
-
(1966)
Statistical Physics: Phase Transitions and Superfluidity
, vol.1
, pp. 242-305
-
-
Kac, M.1
-
9
-
-
0014563625
-
Phase transition and eigenvalue degeneracy of a one dimensional anharmonic oscillator
-
C. J. Thompson and M. Kac, "Phase Transition and Eigenvalue Degeneracy of a One Dimensional Anharmonic Oscillator," Stud. Appl. Math. 48, 257-264 (1969).
-
(1969)
Stud. Appl. Math.
, vol.48
, pp. 257-264
-
-
Thompson, C.J.1
Kac, M.2
-
11
-
-
0021442334
-
Metastable behavior of stochastic dynamics: A pathwise approach
-
M. Cassandro, A. Galves, E. Olivieri, and M. E. Vares, "Metastable Behavior of Stochastic Dynamics: A Pathwise Approach," J. Stat. Phys. 35, 603-634 (1984).
-
(1984)
J. Stat. Phys.
, vol.35
, pp. 603-634
-
-
Cassandro, M.1
Galves, A.2
Olivieri, E.3
Vares, M.E.4
-
12
-
-
0003027252
-
Clusters, metastability, and nucleation: Kinetics of first-order phase transitions
-
M. Kalos, J. L. Lebowitz, O. Penrose, and A. Sur, "Clusters, Metastability, and Nucleation: Kinetics of First-Order Phase Transitions," J. Stat. Phys. 18, 39-52 (1978).
-
(1978)
J. Stat. Phys.
, vol.18
, pp. 39-52
-
-
Kalos, M.1
Lebowitz, J.L.2
Penrose, O.3
Sur, A.4
-
13
-
-
0037492836
-
Rigorous treatment of the Van Der Waals-Maxwell theory of the liquid-vapor transition
-
J. L. Lebowitz and O. Penrose, "Rigorous Treatment of the Van Der Waals-Maxwell Theory of the Liquid-Vapor Transition," J. Math. Phys. 7, 98-113 (1966).
-
(1966)
J. Math. Phys.
, vol.7
, pp. 98-113
-
-
Lebowitz, J.L.1
Penrose, O.2
-
14
-
-
0010851820
-
Metastahility and exponential approach to equilibrium for low temperature stochastic Ising models
-
F. Martinelli, E. Olivieri, and E. Scoppola, "Metastahility and Exponential Approach to Equilibrium for Low Temperature Stochastic Ising Models," J. Stat. Phys. 61, 1105-1119 (1990).
-
(1990)
J. Stat. Phys.
, vol.61
, pp. 1105-1119
-
-
Martinelli, F.1
Olivieri, E.2
Scoppola, E.3
-
15
-
-
36749109326
-
Metastability and the analytic continuation of eigenvalues
-
C. M. Newman and L. S. Schulman, "Metastability and the Analytic Continuation of Eigenvalues," J. Math. Phys. 18, 23-30 (1977).
-
(1977)
J. Math. Phys.
, vol.18
, pp. 23-30
-
-
Newman, C.M.1
Schulman, L.S.2
-
16
-
-
0041138756
-
Complex free energies and metastable lifetimes
-
C. M. Newman and L. S. Schulman, "Complex Free Energies and Metastable Lifetimes," J. Stat. Phys. 23, 131-148 (1980).
-
(1980)
J. Stat. Phys.
, vol.23
, pp. 131-148
-
-
Newman, C.M.1
Schulman, L.S.2
-
17
-
-
0003233032
-
Towards a rigorous molecular theory of metastability
-
edited by L. Montroll and J. Lebowitz North-Holland, Amsterdam
-
O. Penrose and J. L. Lebowitz, "Towards a Rigorous Molecular Theory of Metastability," in Fluctuation Phenomena, edited by L. Montroll and J. Lebowitz (North-Holland, Amsterdam, 1987), pp. 323-375.
-
(1987)
Fluctuation Phenomena
, pp. 323-375
-
-
Penrose, O.1
Lebowitz, J.L.2
-
18
-
-
1542439795
-
Metastable decay rates and analytic continuation
-
B. Gaveau and L. S. Schulman, "Metastable Decay Rates and Analytic Continuation," Lett. Math. Phys. 18, 201-208 (1989).
-
(1989)
Lett. Math. Phys.
, vol.18
, pp. 201-208
-
-
Gaveau, B.1
Schulman, L.S.2
-
19
-
-
0000568525
-
Dynamical metastability
-
B. Gaveau and L. S. Schulman, "Dynamical Metastability," J. Phys. A 20, 2865-2873 (1987).
-
(1987)
J. Phys. A
, vol.20
, pp. 2865-2873
-
-
Gaveau, B.1
Schulman, L.S.2
-
20
-
-
30244517401
-
Finite-size scaling for mean-field percolation
-
B. Gaveau and L. S. Schulman, "Finite-size scaling for mean-field percolation," J. Stat. Phys. 70, 613-634 (1993).
-
(1993)
J. Stat. Phys.
, vol.70
, pp. 613-634
-
-
Gaveau, B.1
Schulman, L.S.2
-
21
-
-
85033887393
-
-
note
-
The "fundamental intuition" of phase coexistence has been incorporated in other definitions of phase transition, some of them stemming from the C* algebra approach (Refs. 25 and 26). In this language a phase transition is expressed by the nonuniqueness of the infinite volume Gibbs measure. As indicated, we do not know how to bring infinite volume (the thermodynamic limit) into so mild a form of nonequilibrium as metastability, nor do we think that such a limit best reflects the physics (cf. Ref. 6).
-
-
-
-
22
-
-
85033891509
-
-
note
-
1") must be small in some sense for our phases to be well-defined, but the measure of smallness in that equation can probably be replaced by something weaker.
-
-
-
-
23
-
-
85033898367
-
-
note
-
1 need not be writable as a sum of one-dimensional projections and a Jordan form would be required. See the remark following Eq. (3.4).
-
-
-
-
24
-
-
85033873928
-
-
note
-
M is small.
-
-
-
-
26
-
-
0040544850
-
The C*-algebra approach to statistical mechanics
-
edited by E. G. D. Cohen Marcel Dekker, New York
-
D. Ruelle, "The C*-algebra approach to statistical mechanics," in Statistical Mechanics at the Turn of the Decade, edited by E. G. D. Cohen (Marcel Dekker, New York, 1971), p. 67-79.
-
(1971)
Statistical Mechanics at the Turn of the Decade
, pp. 67-79
-
-
Ruelle, D.1
|