-
1
-
-
0028516587
-
A uniform circuit lower bound for the permanent
-
E. Allender and V. Gore. A uniform circuit lower bound for the permanent. SIAM J. Comput., 23:1026-1049, 1994.
-
(1994)
SIAM J. Comput.
, vol.23
, pp. 1026-1049
-
-
Allender, E.1
Gore, V.2
-
2
-
-
0008651743
-
Depth reductions for circuits of unbounded fan-in
-
E. Allender and U. Hertrampf. Depth reductions for circuits of unbounded fan-in. SIAM J. Comput., 112:217-238, 1994. An earlier version appears as: E. Allender, A note on the power of threshold circuits, Proc. 30th IEEE Symp. on Foundations of Computer Science, pages 580-584, 1989.
-
(1994)
SIAM J. Comput.
, vol.112
, pp. 217-238
-
-
Allender, E.1
Hertrampf, U.2
-
3
-
-
0024766765
-
A note on the power of threshold circuits
-
E. Allender and U. Hertrampf. Depth reductions for circuits of unbounded fan-in. SIAM J. Comput., 112:217-238, 1994. An earlier version appears as: E. Allender, A note on the power of threshold circuits, Proc. 30th IEEE Symp. on Foundations of Computer Science, pages 580-584, 1989.
-
(1989)
Proc. 30th IEEE Symp. on Foundations of Computer Science
, pp. 580-584
-
-
Allender, E.1
-
4
-
-
0001455609
-
On ACC
-
R. Beigel and J. Tarui. On ACC. Comput. Complexity, 4:350-366, 1994. An earlier version appears as: On ACC in Proc. 32nd IEEE Symp. on Foundations of Computer Science, pages 783-792, 1991.
-
(1994)
Comput. Complexity
, vol.4
, pp. 350-366
-
-
Beigel, R.1
Tarui, J.2
-
5
-
-
85033893281
-
On ACC
-
R. Beigel and J. Tarui. On ACC. Comput. Complexity, 4:350-366, 1994. An earlier version appears as: On ACC in Proc. 32nd IEEE Symp. on Foundations of Computer Science, pages 783-792, 1991.
-
(1991)
Proc. 32nd IEEE Symp. on Foundations of Computer Science
, pp. 783-792
-
-
-
8
-
-
0027227135
-
Randomness efficient unique element isolation with application to perfect matching and related problems
-
Springer-Verlag, New York
-
S. Chari, P. Rohtagi, and A. Srinivasan. Randomness efficient unique element isolation with application to perfect matching and related problems. In Proc. 25th ACM Symp. on Theory of Computing, pages 458-467. Springer-Verlag, New York, 1993.
-
(1993)
Proc. 25th ACM Symp. on Theory of Computing
, pp. 458-467
-
-
Chari, S.1
Rohtagi, P.2
Srinivasan, A.3
-
11
-
-
38149074447
-
The computational complexity of universal hashing
-
Y. Mansour, N. Nisan, and P. Tiwari. The computational complexity of universal hashing. Theoret. Comput. Sci., 107:121-133, 1993.
-
(1993)
Theoret. Comput. Sci.
, vol.107
, pp. 121-133
-
-
Mansour, Y.1
Nisan, N.2
Tiwari, P.3
-
12
-
-
51249174825
-
Matching is as easy as matrix inversion
-
K. Mulmuley, U.V. Vazirani, and V.V. Vazirani. Matching is as easy as matrix inversion. Combinatorica, 7(1):105-113, 1987.
-
(1987)
Combinatorica
, vol.7
, Issue.1
, pp. 105-113
-
-
Mulmuley, K.1
Vazirani, U.V.2
Vazirani, V.V.3
-
13
-
-
0027641832
-
Small-bias probability spaces: Efficient constructions and applications
-
J. Naor and M. Naor. Small-bias probability spaces: efficient constructions and applications. SIAM J. Comput., 22(4):838-856, 1993. An earlier version appears as: J. Naor and M. Naor, Small-bias probability spaces: efficient constructions and applications, in Proc. 22nd Annual ACM Symp. on Theory of Computing, pages 213-223, 1990.
-
(1993)
SIAM J. Comput.
, vol.22
, Issue.4
, pp. 838-856
-
-
Naor, J.1
Naor, M.2
-
14
-
-
0025152620
-
Small-bias probability spaces: Efficient constructions and applications
-
J. Naor and M. Naor. Small-bias probability spaces: efficient constructions and applications. SIAM J. Comput., 22(4):838-856, 1993. An earlier version appears as: J. Naor and M. Naor, Small-bias probability spaces: efficient constructions and applications, in Proc. 22nd Annual ACM Symp. on Theory of Computing, pages 213-223, 1990.
-
(1990)
Proc. 22nd Annual ACM Symp. on Theory of Computing
, pp. 213-223
-
-
Naor, J.1
Naor, M.2
-
15
-
-
0000883554
-
Lower bounds on the size of bounded depth networks over a complete basis with logical addition
-
A. Razborov. Lower bounds on the size of bounded depth networks over a complete basis with logical addition. Mat. Zametki, 41:598-607, 1987. An English translation appears in: Math. Notes 41:333-338, 1987.
-
(1987)
Mat. Zametki
, vol.41
, pp. 598-607
-
-
Razborov, A.1
-
16
-
-
26944478724
-
-
An English translation appears
-
A. Razborov. Lower bounds on the size of bounded depth networks over a complete basis with logical addition. Mat. Zametki, 41:598-607, 1987. An English translation appears in: Math. Notes 41:333-338, 1987.
-
(1987)
Math. Notes
, vol.41
, pp. 333-338
-
-
-
17
-
-
0343851485
-
Polynomials and combinatorial definitions of languages
-
A. Selman and L. Hamaspaandra, editors, Springer-Verlag, New York
-
K. Regan. Polynomials and combinatorial definitions of languages. In A. Selman and L. Hamaspaandra, editors, Complexity Theory Retrospective II. Springer-Verlag, New York, 1996.
-
(1996)
Complexity Theory Retrospective II
-
-
Regan, K.1
-
18
-
-
0023570259
-
Algebraic methods in the theory of lower bounds for boolean circuit complexity
-
R. Smolensky. Algebraic methods in the theory of lower bounds for boolean circuit complexity. In Proc. 19th ACM Symp. on Theory of Computing, pages 77-82, 1987.
-
(1987)
Proc. 19th ACM Symp. on Theory of Computing
, pp. 77-82
-
-
Smolensky, R.1
-
19
-
-
0027591463
-
Randomized polynomials, threshold circuits, and the polynomial hierarchy
-
J. Tarui. Randomized polynomials, threshold circuits, and the polynomial hierarchy. Theoret. Comput. Sci., 113:167-183, 1993. An earlier version appears in: Proc. 8th Annual Symp. on Theoretical Aspects of Computer Science, Lecture Notes in Computer Science, volume 480, Springer-Verlag, Berlin, 1991, pages 238-250.
-
(1993)
Theoret. Comput. Sci.
, vol.113
, pp. 167-183
-
-
Tarui, J.1
-
20
-
-
84936047855
-
-
Springer-Verlag, Berlin
-
J. Tarui. Randomized polynomials, threshold circuits, and the polynomial hierarchy. Theoret. Comput. Sci., 113:167-183, 1993. An earlier version appears in: Proc. 8th Annual Symp. on Theoretical Aspects of Computer Science, Lecture Notes in Computer Science, volume 480, Springer-Verlag, Berlin, 1991, pages 238-250.
-
(1991)
Proc. 8th Annual Symp. on Theoretical Aspects of Computer Science, Lecture Notes in Computer Science
, vol.480
, pp. 238-250
-
-
-
21
-
-
0026239342
-
PP is as hard as the polynomial-time hierarchy
-
S. Toda. PP is as hard as the polynomial-time hierarchy. SIAM J. Comput., 20:865-877, 1991. An earlier version appears as: S. Toda, On the computational power of PP and ⊕P, in: Proc. 30th IEEE Symp. on Foundations of Computer Science, pages 514-519, 1989.
-
(1991)
SIAM J. Comput.
, vol.20
, pp. 865-877
-
-
Toda, S.1
-
22
-
-
0024766356
-
On the computational power of PP and ⊕P
-
S. Toda. PP is as hard as the polynomial-time hierarchy. SIAM J. Comput., 20:865-877, 1991. An earlier version appears as: S. Toda, On the computational power of PP and ⊕P, in: Proc. 30th IEEE Symp. on Foundations of Computer Science, pages 514-519, 1989.
-
(1989)
Proc. 30th IEEE Symp. on Foundations of Computer Science
, pp. 514-519
-
-
Toda, S.1
-
23
-
-
0026372597
-
Counting classes are at least as hard as the the polynomial-time hierarchy
-
S. Toda and M. Ogiwara. Counting classes are at least as hard as the the polynomial-time hierarchy. SIAM J. Comput., 21:316-328, 1992. An earlier version appears in: Proc. 6th Structure in Complexity Theory Conference, IEEE Computer Society Press, New York, pages 2-12.
-
(1992)
SIAM J. Comput.
, vol.21
, pp. 316-328
-
-
Toda, S.1
Ogiwara, M.2
-
24
-
-
0026372597
-
-
IEEE Computer Society Press, New York
-
S. Toda and M. Ogiwara. Counting classes are at least as hard as the the polynomial-time hierarchy. SIAM J. Comput., 21:316-328, 1992. An earlier version appears in: Proc. 6th Structure in Complexity Theory Conference, IEEE Computer Society Press, New York, pages 2-12.
-
Proc. 6th Structure in Complexity Theory Conference
, pp. 2-12
-
-
-
25
-
-
0022911518
-
NP is as easy as detecting unique solutions
-
L. Valiant and V. Vazirani. NP is as easy as detecting unique solutions. Theoret. Comput. Sci., 47:85-93, 1986.
-
(1986)
Theoret. Comput. Sci.
, vol.47
, pp. 85-93
-
-
Valiant, L.1
Vazirani, V.2
|