메뉴 건너뛰기




Volumn 34, Issue 5, 1998, Pages 767-778

The blow-up rate for a system of heat equations with nonlinear boundary conditions

Author keywords

Blow up rate; Blow up set; Nonlinear boundary conditions; System of heat equations

Indexed keywords

NONLINEAR EQUATIONS; NUMBER THEORY; NUMERICAL METHODS; OPTIMIZATION; ORDINARY DIFFERENTIAL EQUATIONS; THEOREM PROVING;

EID: 0032326168     PISSN: 0362546X     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0362-546X(97)00573-7     Document Type: Article
Times cited : (42)

References (10)
  • 1
    • 0000982445 scopus 로고
    • Nonexistence theorems for the heat equation with nonlinear boundary conditions and for the porous medium equation backward in time
    • H.A. Levine, L.E. Payne, Nonexistence theorems for the heat equation with nonlinear boundary conditions and for the porous medium equation backward in time, J. Differential Equations 16 (1974) 319-334.
    • (1974) J. Differential Equations , vol.16 , pp. 319-334
    • Levine, H.A.1    Payne, L.E.2
  • 2
    • 0023212981 scopus 로고
    • A potential well theory for the heat equation with a nonlinear boundary condition
    • H.A. Levine, R.A. Smith, A potential well theory for the heat equation with a nonlinear boundary condition, Math. Methods Appl. Sci. 9 (1987) 127-136.
    • (1987) Math. Methods Appl. Sci. , vol.9 , pp. 127-136
    • Levine, H.A.1    Smith, R.A.2
  • 3
    • 0003088926 scopus 로고
    • On existence and nonexistence in the large of solutions of parabolic differential equations with a nonlinear boundary condition
    • W. Walter, On existence and nonexistence in the large of solutions of parabolic differential equations with a nonlinear boundary condition, SIAM J. Math. Anal. 6 (1975) 85-90.
    • (1975) SIAM J. Math. Anal. , vol.6 , pp. 85-90
    • Walter, W.1
  • 4
    • 0001664892 scopus 로고
    • Blow up results and localization of blow up points for the heat equation with a nonlinear boundary condition
    • J.L. Gomez, V. Marquez, N. Wolanski, Blow up results and localization of blow up points for the heat equation with a nonlinear boundary condition, J. Differential Equation 92 (1991) 384-401.
    • (1991) J. Differential Equation , vol.92 , pp. 384-401
    • Gomez, J.L.1    Marquez, V.2    Wolanski, N.3
  • 5
    • 84988159342 scopus 로고
    • The blow-up rate for heat equation with a nonlinear boundary condition
    • M. Fila, P. Quittner, The blow-up rate for heat equation with a nonlinear boundary condition, Math. Methods Appl. Sci. 14 (1991) 197-205.
    • (1991) Math. Methods Appl. Sci. , vol.14 , pp. 197-205
    • Fila, M.1    Quittner, P.2
  • 6
    • 84968468748 scopus 로고
    • The profile near blowup time for solution of the heat equation with a nonlinear boundary condition
    • B. Hu, H.M. Yin, The profile near blowup time for solution of the heat equation with a nonlinear boundary condition, Transactions Amer. Soc. 346 (1994) 117-135.
    • (1994) Transactions Amer. Soc. , vol.346 , pp. 117-135
    • Hu, B.1    Yin, H.M.2
  • 7
    • 84988147833 scopus 로고
    • Global existence and blow-up for a system of heat equations with nonlinear boundary conditions
    • K. Deng, Global existence and blow-up for a system of heat equations with nonlinear boundary conditions, Math. Methods Appl. Sci. 18 (1995) 307-315.
    • (1995) Math. Methods Appl. Sci. , vol.18 , pp. 307-315
    • Deng, K.1
  • 8
    • 84990616610 scopus 로고
    • Asympotic self-similar blow-up of semilinear heat equations
    • Y. Giga, R.V. Kohn, Asympotic self-similar blow-up of semilinear heat equations, Comm. Pure Appl. Math. 38 (1985) 297-319.
    • (1985) Comm. Pure Appl. Math. , vol.38 , pp. 297-319
    • Giga, Y.1    Kohn, R.V.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.