메뉴 건너뛰기




Volumn 7, Issue 4, 1998, Pages 529-544

Numerical computation of multivariate normal and multivariate-t probabilities over convex regions)?

Author keywords

Convex region; Integral equation; Monte Carlo; Multiple comparisons; Multivariate normal integral; Multivariate t integral

Indexed keywords


EID: 0032286933     PISSN: 10618600     EISSN: 15372715     Source Type: Journal    
DOI: 10.1080/10618600.1998.10474793     Document Type: Article
Times cited : (40)

References (27)
  • 1
    • 0003297696 scopus 로고
    • Tables of Percentage Points of Multivariate Student t Distributions
    • R.E. Odeh and J.M. Davenport, Providence, RI: American Mathematical Society
    • Bechhofer, R.E., and Dunnett, C.W. (1988), “Tables of Percentage Points of Multivariate Student t Distributions,” in Selected Tables in Mathematical Statistics, (11), eds. R.E. Odeh and J.M. Davenport, Providence, RI: American Mathematical Society.
    • (1988) Selected Tables in Mathematical Statistics , vol.11
    • Bechhofer, R.E.1    Dunnett, C.W.2
  • 2
    • 0001613054 scopus 로고
    • “The Multivariate t-distribution Associated With a Set of Normal Sample Deviates
    • Cornish, E.A. (1954), “The Multivariate t-distribution Associated With a Set of Normal Sample Deviates,” Australian Journal of Physics, 7, 531-542.
    • (1954) ” Australian Journal of Physics , vol.7 , pp. 531-542
    • Cornish, E.A.1
  • 3
    • 84949690877 scopus 로고
    • Computing Probabilities of Rectangles in Case of Multinormal Distribution
    • Deak, I. (1986), “Computing Probabilities of Rectangles in Case of Multinormal Distribution,” Journal of Statistical Computation and Simulation, 26, 101-114.
    • (1986) Journal of Statistical Computation and Simulation , vol.26 , pp. 101-114
    • Deak, I.1
  • 5
    • 84976685421 scopus 로고
    • Computation of the Multivariate Normal Integral
    • Drezner, Z. (1992), “Computation of the Multivariate Normal Integral,” ACM Transactions on Mathematical Software, 18, 470-480.
    • (1992) ACM Transactions on Mathematical Software , vol.18 , pp. 470-480
    • Drezner, Z.1
  • 7
    • 85011530558 scopus 로고
    • Multivariate Normal Probability Integrals With Product Moment Correlation Structure, Algorithm AS 251, Applied Statistics, 38, 564-579; correction note
    • Dunnett, C.W. (1989), “Multivariate Normal Probability Integrals With Product Moment Correlation Structure, Algorithm AS 251,” Applied Statistics, 38, 564-579; correction note, Applied Statistics, 42, 709.
    • (1989) Applied Statistics , vol.42 , pp. 709
    • Dunnett, C.W.1
  • 8
    • 0000777364 scopus 로고
    • A Bivariate Generalization of Students t-distribution With Tables for Certain Special Cases,”
    • Dunnett, C.W., and Sobel, S. (1954), “A Bivariate Generalization of Student’s t-distribution With Tables for Certain Special Cases,” Biometrika, 41, 153-169.
    • (1954) Biometrika , vol.41 , pp. 153-169
    • Dunnett, C.W.1    Sobel, S.2
  • 9
    • 0001341675 scopus 로고
    • Numerical Computation of Multivariate Normal Probabilities
    • Genz, A. (1992), “Numerical Computation of Multivariate Normal Probabilities,” Journal of Computational and Graphical Statistics, 1, 141-149.
    • (1992) Journal of Computational and Graphical Statistics , vol.1 , pp. 141-149
    • Genz, A.1
  • 10
    • 0000956899 scopus 로고
    • A Comparison of Methods for the Computation of Multivariate Normal Probabilities
    • Genz, A. (1994), “A Comparison of Methods for the Computation of Multivariate Normal Probabilities,” Computing Science and Statistics, 25, 400-405.
    • (1994) Computing Science and Statistics , vol.25 , pp. 400-405
    • Genz, A.1
  • 11
    • 0001205992 scopus 로고
    • Probability Integrals of Multivariate Normal and Multivariate t
    • Gupta, S.S. (1963), “Probability Integrals of Multivariate Normal and Multivariate t,” The Annals of Mathematical Statistics, 34, 792-828.
    • (1963) The Annals of Mathematical Statistics , vol.34 , pp. 792-828
    • Gupta, S.S.1
  • 12
    • 20844436659 scopus 로고
    • On the Distribution of the Studentized Maximum of Equally Correlated Normal Random Variables
    • Gupta, S. S., Panchapakesan, S., and Sohn, J.K. (1985), “On the Distribution of the Studentized Maximum of Equally Correlated Normal Random Variables,” Communications on Statistics, Ser. B, 14, 103-135.
    • (1985) Communications on Statistics, Ser. B , vol.14 , pp. 103-135
    • Gupta, S.S.1    Panchapakesan, S.2    Sohn, J.K.3
  • 16
    • 0001124571 scopus 로고
    • Computer Evaluation of the Multivariate Normal Integral
    • Milton, R.C. (1972), “Computer Evaluation of the Multivariate Normal Integral,” Technometrics, 14, 881-889.
    • (1972) Technometrics , vol.14 , pp. 881-889
    • Milton, R.C.1
  • 19
    • 0002398713 scopus 로고
    • Multivariate Normal Probabilities With Error Bound
    • Schervish, M. (1984), “Multivariate Normal Probabilities With Error Bound,” Applied Statistics, 33, 81-87.
    • (1984) Applied Statistics , vol.33 , pp. 81-87
    • Schervish, M.1
  • 22
    • 41849095774 scopus 로고
    • technical report TR-93-1, University of Central Florida, Department of Statistics
    • Somerville, P. N. (1993c), “Simultaneous Multiple Orderings,” technical report TR-93-1, University of Central Florida, Department of Statistics.
    • (1993) Simultaneous Multiple Orderings
    • Somerville, P.N.1
  • 23
    • 0041857426 scopus 로고
    • technical report TR-94-1, University of Central Florida, Department of Statistics
    • Somerville, P. N. (1994), “Multiple Comparisons,” technical report TR-94-1, University of Central Florida, Department of Statistics.
    • (1994) Multiple Comparisons
    • Somerville, P.N.1
  • 24
    • 0031180197 scopus 로고    scopus 로고
    • One-Step Multiple Comparison Procedures (Calculation of Constants)
    • Somerville, P. N. (1997), “One-Step Multiple Comparison Procedures (Calculation of Constants),” Computational Statistics and Data Analysis, 25, 217-233.
    • (1997) Computational Statistics and Data Analysis , vol.25 , pp. 217-233
    • Somerville, P.N.1
  • 26
    • 84963449349 scopus 로고
    • Comparison of Algorithms for Bivariate Normal Probabilities Over a Rectangle Based on a Self-Validating Result From Interval Analysis
    • Wang, M.C., and Kennedy, W.J. (1990), “Comparison of Algorithms for Bivariate Normal Probabilities Over a Rectangle Based on a Self-Validating Result From Interval Analysis,” Journal of Statistical Computation and and Simulation, 37, 13-25.
    • (1990) Journal of Statistical Computation and and Simulation , vol.37 , pp. 13-25
    • Wang, M.C.1    Kennedy, W.J.2
  • 27
    • 38249015589 scopus 로고
    • A Numerical Method for Accurately Approximating Multivariate Normal Probabilities
    • Wang, M.C., (1992), “A Numerical Method for Accurately Approximating Multivariate Normal Probabilities,” Computational Statistics and Data Analysis, 13, 197-210.
    • (1992) Computational Statistics and Data Analysis , vol.13 , pp. 197-210
    • Wang, M.C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.