메뉴 건너뛰기




Volumn 20, Issue 2, 1998, Pages 103-112

Non-linear model-based predictive control of gasoline engine air-fuel ratio

Author keywords

air fuel ratio; gasoline engines; Model predictive control; neural networks; rapid sampling frequency

Indexed keywords

AIR-FUEL RATIO;

EID: 0032285076     PISSN: 01423312     EISSN: None     Source Type: Journal    
DOI: 10.1177/014233129802000208     Document Type: Article
Times cited : (15)

References (30)
  • 2
    • 33747563004 scopus 로고
    • Air Fuel Ratio Control Technology for Ultra Low Emissions Vehicle
    • Paper 93EN032, The Motor Vehicle and the Environment - Demands of the Nineties and Beyond, 26th ISATA.
    • Beaumont, A.J., and Noble, A.D. 1993. ‘Air Fuel Ratio Control Technology for Ultra Low Emissions Vehicle’, Paper 93EN032, The Motor Vehicle and the Environment - Demands of the Nineties and Beyond, 26th ISATA.
    • (1993)
    • Beaumont, A.J.1    Noble, A.D.2
  • 3
    • 0003268041 scopus 로고
    • Adaptive Transient Air-Fuel Ratio Control to Minimise Gasoline Engine Emissions
    • FISITA Congress, London
    • Beaumont, A.J., Noble, A.D., and Scarisbrick, A. 1992. ‘Adaptive Transient Air-Fuel Ratio Control to Minimise Gasoline Engine Emissions’, FISITA Congress, London.
    • (1992)
    • Beaumont, A.J.1    Noble, A.D.2    Scarisbrick, A.3
  • 4
    • 0025010309 scopus 로고
    • Use of neural nets for dynamic modeling and control of chemical process systems
    • Bhat, N., and McAvoy, T.J. 1990. ‘Use of neural nets for dynamic modeling and control of chemical process systems’, Computers Chem Engng, 14(4/5), 573-583.
    • (1990) Computers Chem Engng , vol.14 , Issue.4-5 , pp. 573-583
    • Bhat, N.1    McAvoy, T.J.2
  • 5
    • 84998048980 scopus 로고
    • Using the Kohonen self-organising map for novel data handling in adaptive learning
    • Solihull, November
    • Buttress, J. 1995. ‘Using the Kohonen self-organising map for novel data handling in adaptive learning’, ERA Conf on Neural Networks - Producing dependable systems, Solihull, November.
    • (1995) ERA Conf on Neural Networks - Producing dependable systems
    • Buttress, J.1
  • 6
    • 0025448276 scopus 로고
    • Non linear system identification using neural networks
    • Chen, S., Billings, S.A., and Grant, P.M. 1990. ‘Non linear system identification using neural networks ‘, Int J Control, 51(6), 1191-1214.
    • (1990) Int J Control , vol.51 , Issue.6 , pp. 1191-1214
    • Chen, S.1    Billings, S.A.2    Grant, P.M.3
  • 7
    • 0023310961 scopus 로고
    • Generalised predictive control. Part 1: The basic algorithm and Part 2: Extensions and interpretations
    • Clarke, D.W., Mohtadi, C., and Tuffs, P.S. 1987. ‘Generalised predictive control. Part 1: The basic algorithm and Part 2: Extensions and interpretations’, Automatica, 23(2), 137-160.
    • (1987) Automatica , vol.23 , Issue.2 , pp. 137-160
    • Clarke, D.W.1    Mohtadi, C.2    Tuffs, P.S.3
  • 8
    • 0019337408 scopus 로고
    • Dynamic Matrix Control - a computer control algorithm
    • San Francisco.
    • Cutler, C.R., and Ramaker, B.L. 1980. ‘Dynamic Matrix Control - a computer control algorithm ‘, JACC, San Francisco.
    • (1980) JACC
    • Cutler, C.R.1    Ramaker, B.L.2
  • 9
    • 0024861871 scopus 로고
    • Approximations by superpositions of a sigmoidal function’, Math Cont Signal &
    • Cybenko, G. 1989. ‘Approximations by superpositions of a sigmoidal function’, Math Cont Signal & Systems, 2, 303-314.
    • (1989) Systems , vol.2 , pp. 303-314
    • Cybenko, G.1
  • 10
    • 0026849112 scopus 로고
    • Towards improved penicillin fermentation via artificial neural networks
    • Di Massimo, C., Montague, G.A., Willis, M.J., Tham, M.T., and Morris, A.J. 1992. ‘Towards improved penicillin fermentation via artificial neural networks’, Comput Chem Engng, 16(4), 283-291.
    • (1992) Comput Chem Engng , vol.16 , Issue.4 , pp. 283-291
    • Di Massimo, C.1    Montague, G.A.2    Willis, M.J.3    Tham, M.T.4    Morris, A.J.5
  • 12
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • Hornik, K., Stinchombe, M., and White, H. 1989. ‘Multilayer feedforward networks are universal approximators’, Neural Networks, 2, 359-366.
    • (1989) Neural Networks , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchombe, M.2    White, H.3
  • 13
    • 0026954775 scopus 로고
    • Neural networks for control systems - a survey
    • Hunt, K.J., Sbarbaro, D., Zbikowski, R., and Gawthrop, P.J. 1992. ‘Neural networks for control systems - a survey’, Automatica, 28, 1083-1122.
    • (1992) Automatica , vol.28 , pp. 1083-1122
    • Hunt, K.J.1    Sbarbaro, D.2    Zbikowski, R.3    Gawthrop, P.J.4
  • 15
    • 0029190953 scopus 로고
    • Novel Neural Network Internal Model Control Structure
    • Proceedings of the American Control Conference, 1995, Vol 1, 350-354
    • Lightbody, G., and Irwin, G. 1995. ‘Novel Neural Network Internal Model Control Structure’, Proceedings of the American Control Conference, 1995, Vol 1, 350-354.
    • (1995)
    • Lightbody, G.1    Irwin, G.2
  • 16
    • 0023331258 scopus 로고
    • An introduction to computing with neural nets
    • April
    • Lippman, R.P. 1987. ‘An introduction to computing with neural nets’, IEEE ASSP Magazine, April, 4-22.
    • (1987) IEEE ASSP Magazine , pp. 4-22
    • Lippman, R.P.1
  • 18
    • 0028058565 scopus 로고
    • From data to model: A guided tour
    • Ljung, L. 1994. ‘From data to model: A guided tour’, Control ‘94, Vol 1, 422-430.
    • (1994) Control ‘94 , vol.1 , pp. 422-430
    • Ljung, L.1
  • 20
    • 0028207871 scopus 로고
    • Artificial neural networks: Studies in process monitoring and control
    • Morris, A.J., Montague, G.A., and Willis, M.J. 1994. ‘Artificial neural networks: Studies in process monitoring and control’, Trans IChemE, 72, Part A.
    • (1994) Trans IChemE , vol.72 , Issue.Part A
    • Morris, A.J.1    Montague, G.A.2    Willis, M.J.3
  • 27
    • 84998161649 scopus 로고    scopus 로고
    • Modelling Complex Systems Using Artificial Neural Networks’, World Congress on
    • s, San Diego.
    • Turner, P., Lennox, B., Montague, G.A., and Morris, A.J. 1996. ‘Modelling Complex Systems Using Artificial Neural Networks’, World Congress on Neural Networks, San Diego.
    • (1996) Neural Network
    • Turner, P.1    Lennox, B.2    Montague, G.A.3    Morris, A.J.4
  • 28
    • 84947626848 scopus 로고
    • Multilayer feedforward neural networks: A canonical form approximation of nonlinearity
    • Wang, Z., Tham, M.T., and Morris, A.J. 1992. ‘Multilayer feedforward neural networks: A canonical form approximation of nonlinearity’, Int J Control, 56,655-672.
    • (1992) Int J Control , vol.56 , pp. 655-672
    • Wang, Z.1    Tham, M.T.2    Morris, A.J.3
  • 30
    • 0026954989 scopus 로고
    • Artificial neural networks in process estimation and control
    • Willis, M.J., Di Massimo, C., Montague, G.A., Tham, M.T., and Morris, A.J. 1992b. ‘Artificial neural networks in process estimation and control’, Automatica, 28(6), 1181-1187.
    • (1992) Automatica , vol.28 , Issue.6 , pp. 1181-1187
    • Willis, M.J.1    Di Massimo, C.2    Montague, G.A.3    Tham, M.T.4    Morris, A.J.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.