-
1
-
-
0016355478
-
A new look at the statistical model identification
-
Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19, 716-722.
-
(1974)
IEEE Transactions on Automatic Control
, vol.19
, pp. 716-722
-
-
Akaike, H.1
-
3
-
-
84965950928
-
The application of an unfolding model of the PIRT type to the measurement of attitude
-
Andrich, D. (1988). The application of an unfolding model of the PIRT type to the measurement of attitude. Applied Psychological Measurement, 12, 33-51.
-
(1988)
Applied Psychological Measurement
, vol.12
, pp. 33-51
-
-
Andrich, D.1
-
4
-
-
0000433590
-
Marginal maximum likelihood estimation of item parameters: Application of an EM algorithm
-
Bock, R. D., & Aitkin, M. (1981). Marginal maximum likelihood estimation of item parameters: Application of an EM algorithm. Psychometrika, 46, 443-459.
-
(1981)
Psychometrika
, vol.46
, pp. 443-459
-
-
Bock, R.D.1
Aitkin, M.2
-
5
-
-
27644511026
-
Fitting a response model for n dichotomously scored items
-
Bock, R. D., & Lieberman, M. (1970). Fitting a response model for n dichotomously scored items. Psychometrika, 35, 179-197.
-
(1970)
Psychometrika
, vol.35
, pp. 179-197
-
-
Bock, R.D.1
Lieberman, M.2
-
6
-
-
0002963996
-
Factor analysis of dichotomized variables
-
Christoffersson, A. (1975). Factor analysis of dichotomized variables. Psychometrika, 40, 5-32.
-
(1975)
Psychometrika
, vol.40
, pp. 5-32
-
-
Christoffersson, A.1
-
8
-
-
0039263131
-
A stochastic multidimensional scaling vector threshold model for the spatial representation of "pick any/n" data
-
DeSarbo, W. S., & Cho, J. (1989). A stochastic multidimensional scaling vector threshold model for the spatial representation of "pick any/n" data. Psychometrika, 54, 105-129.
-
(1989)
Psychometrika
, vol.54
, pp. 105-129
-
-
DeSarbo, W.S.1
Cho, J.2
-
9
-
-
84970442704
-
Simple and weighted unfolding threshold models for the spatial representation of binary choice data
-
DeSarbo, W. S., & Hoffman, D. L. (1986). Simple and weighted unfolding threshold models for the spatial representation of binary choice data. Applied Psychological Measurement, 10, 247-264.
-
(1986)
Applied Psychological Measurement
, vol.10
, pp. 247-264
-
-
DeSarbo, W.S.1
Hoffman, D.L.2
-
10
-
-
0003377353
-
Constructing MDS joint spaces from binary choice data: A multidimensional unfolding threshold model for marketing research
-
DeSarbo, W. S., & Hoffman, D. L. (1987). Constructing MDS joint spaces from binary choice data: A multidimensional unfolding threshold model for marketing research. Journal of Marketing Research, 24, 40-54.
-
(1987)
Journal of Marketing Research
, vol.24
, pp. 40-54
-
-
DeSarbo, W.S.1
Hoffman, D.L.2
-
12
-
-
84941458106
-
On the prediction of phenomena from qualitative data and the quantification of qualitative data from mathematico-statistical point of view
-
Hayashi, C. (1952). On the prediction of phenomena from qualitative data and the quantification of qualitative data from mathematico-statistical point of view. Annals of the Institute of Statistical Mathematics, 3, 69-98.
-
(1952)
Annals of the Institute of Statistical Mathematics
, vol.3
, pp. 69-98
-
-
Hayashi, C.1
-
14
-
-
0001114187
-
A latent trait model for dichotomous choice data
-
Hoijtink, H. (1990). A latent trait model for dichotomous choice data. Psychometrika, 55, 641-656.
-
(1990)
Psychometrika
, vol.55
, pp. 641-656
-
-
Hoijtink, H.1
-
15
-
-
0031291851
-
A marginatization model for the multidimensional unfolding analysis of ranking data
-
Hojo, H. (1997). A marginatization model for the multidimensional unfolding analysis of ranking data. Japanese Psychological Research, 39, 33-34.
-
(1997)
Japanese Psychological Research
, vol.39
, pp. 33-34
-
-
Hojo, H.1
-
18
-
-
84970695614
-
Fitting a polytomous item response model to Likert-type data
-
Muraki, E. (1990). Fitting a polytomous item response model to Likert-type data. Applied Psychological Measurement, 14, 59-71.
-
(1990)
Applied Psychological Measurement
, vol.14
, pp. 59-71
-
-
Muraki, E.1
-
19
-
-
84976969011
-
Full-information factor analysis for polytomous item responses
-
Muraki, E., & Carlson, J. E. (1995). Full-information factor analysis for polytomous item responses. Applied Psychological Measurement, 19, 73-90.
-
(1995)
Applied Psychological Measurement
, vol.19
, pp. 73-90
-
-
Muraki, E.1
Carlson, J.E.2
-
20
-
-
0001391849
-
A general structural equation model with dichotomous, ordered categorical, and continuous latent variable indicators
-
Muthén, B. (1984). A general structural equation model with dichotomous, ordered categorical, and continuous latent variable indicators. Psychometrika, 49, 115-132.
-
(1984)
Psychometrika
, vol.49
, pp. 115-132
-
-
Muthén, B.1
-
22
-
-
0002723397
-
Estimation of latent ability using response pattern of graded scores
-
Samejima, E (1969). Estimation of latent ability using response pattern of graded scores. Psychometrika Monograph Supplement, No. 17.
-
(1969)
Psychometrika Monograph Supplement
, Issue.17
-
-
Samejima, E.1
-
25
-
-
18844414182
-
Tashisentaku deta no kohmoku hanno moderu. [Item response models for multi-category data.]
-
Paper presented Tokyo, February
-
Takane, Y. (1984). Tashisentaku deta no kohmoku hanno moderu. [Item response models for multi-category data.] Paper presented at the Symposium on Statistical Modelling sponsored by the Ministry of Education, Tokyo, February.
-
(1984)
Symposium on Statistical Modelling Sponsored by the Ministry of Education
-
-
Takane, Y.1
-
26
-
-
0001725503
-
An item response model for multidimensional analysis of multiple-choice data
-
Takane, Y. (1997). An item response model for multidimensional analysis of multiple-choice data. Behaviormetrika, 23, 153-167.
-
(1997)
Behaviormetrika
, vol.23
, pp. 153-167
-
-
Takane, Y.1
-
27
-
-
84976925870
-
The measurement of scalability for non-cumulative items
-
Wohlwill, J. F. (1963). The measurement of scalability for non-cumulative items. Educational and Psychological Measurement, 23, 543-555.
-
(1963)
Educational and Psychological Measurement
, vol.23
, pp. 543-555
-
-
Wohlwill, J.F.1
|