메뉴 건너뛰기




Volumn 7, Issue 3, 1998, Pages 195-215

Global feature space neural network for active computer vision

Author keywords

Active vision; Classification; Neural networks; Pose estimation; Recognition; Representation

Indexed keywords


EID: 0032264375     PISSN: 09410643     EISSN: None     Source Type: Journal    
DOI: 10.1007/BF01414882     Document Type: Article
Times cited : (4)

References (51)
  • 1
    • 0024056554 scopus 로고
    • Active perception
    • Bajcsy R. Active perception. Proc IEEE 1988; 76: 996-1004.
    • (1988) Proc IEEE , vol.76 , pp. 996-1004
    • Bajcsy, R.1
  • 4
    • 0029568042 scopus 로고
    • Classifier and shift-invariant ATR neural networks
    • Casasent D, Neiberg L. Classifier and shift-invariant ATR neural networks. Neural Networks 1995; 8(7/8): 1117-1130.
    • (1995) Neural Networks , vol.8 , Issue.7-8 , pp. 1117-1130
    • Casasent, D.1    Neiberg, L.2
  • 5
    • 0026820958 scopus 로고
    • Structural indexing: Efficient 3-D object recognition
    • Stein F, Medioni G. Structural indexing: Efficient 3-D object recognition. IEEE Trans PAMI 1992; 14: 125-144.
    • (1992) IEEE Trans PAMI , vol.14 , pp. 125-144
    • Stein, F.1    Medioni, G.2
  • 7
    • 0031387913 scopus 로고    scopus 로고
    • Feature space trajectory representation for active vision
    • Applications and Science of Artificial Neural Networks III, S. Rogers, (editor)
    • Sipe M, Casasent D, Neiberg L. Feature space trajectory representation for active vision. In Applications and Science of Artificial Neural Networks III, S. Rogers, (editor), Proc Soc Photo-Optical Instrumentation Eng 1997; 3077: 254-265.
    • (1997) Proc Soc Photo-optical Instrumentation Eng , vol.3077 , pp. 254-265
    • Sipe, M.1    Casasent, D.2    Neiberg, L.3
  • 8
    • 0029546605 scopus 로고
    • Feature space trajectory neural net classifier: 8-class distortion-invariant tests
    • Intelligent Robots and Computer Vision XIV: Algorithms, Techniques, Active Vision, and Materials Handling, D. Casasent (editor)
    • Neiberg L, Casasent D, Fontana R, Cade J. Feature space trajectory neural net classifier: 8-class distortion-invariant tests. In Intelligent Robots and Computer Vision XIV: Algorithms, Techniques, Active Vision, and Materials Handling, D. Casasent (editor), Proc Soc of Photo-Optical Instrumentation Eng 1995; 2588: 540-555.
    • (1995) Proc Soc of Photo-optical Instrumentation Eng , vol.2588 , pp. 540-555
    • Neiberg, L.1    Casasent, D.2    Fontana, R.3    Cade, J.4
  • 9
    • 6244301887 scopus 로고    scopus 로고
    • Feature space trajectory for distorted-object classification and pose estimation in synthetic aperture radar
    • Casasent D, Shenoy R. Feature space trajectory for distorted-object classification and pose estimation in synthetic aperture radar. Opt Eng 1997; 36: 2719-2728.
    • (1997) Opt Eng , vol.36 , pp. 2719-2728
    • Casasent, D.1    Shenoy, R.2
  • 11
  • 12
    • 0001160588 scopus 로고
    • What size net gives valid generalization?
    • Baum EB, Haussler D. What size net gives valid generalization? Neural Computation 1989; 1: 151-160.
    • (1989) Neural Computation , vol.1 , pp. 151-160
    • Baum, E.B.1    Haussler, D.2
  • 13
    • 0041126942 scopus 로고
    • Hard learning the easy way: Backpropagation with deformation
    • Smieja FJ, Richards GD. Hard learning the easy way: backpropagation with deformation. Complex Systems 1988; 2: 671-704.
    • (1988) Complex Systems , vol.2 , pp. 671-704
    • Smieja, F.J.1    Richards, G.D.2
  • 14
    • 0028345313 scopus 로고
    • The minimum feature set problem
    • Horn KSV, Martinez TR. The minimum feature set problem. Neural Networks 1994; 7(3): 491-494.
    • (1994) Neural Networks , vol.7 , Issue.3 , pp. 491-494
    • Horn, K.S.V.1    Martinez, T.R.2
  • 15
    • 0027242809 scopus 로고
    • Initializing backpropagation networks with prototypes
    • Denoeux T, Lengelle R. Initializing backpropagation networks with prototypes. Neural Networks 1993; 6(3): 351-363.
    • (1993) Neural Networks , vol.6 , Issue.3 , pp. 351-363
    • Denoeux, T.1    Lengelle, R.2
  • 16
    • 33846446220 scopus 로고
    • Restart procedures for the conjugate gradient method
    • Powell MJD. Restart procedures for the conjugate gradient method. Math Programming 1977; 12: 241-254.
    • (1977) Math Programming , vol.12 , pp. 241-254
    • Powell, M.J.D.1
  • 17
    • 0000219512 scopus 로고
    • Adaptive-clustering optical neural net
    • Casasent D, Barnard E. Adaptive-clustering optical neural net. Appl Opt 1990; 29: 2603-2615.
    • (1990) Appl Opt , vol.29 , pp. 2603-2615
    • Casasent, D.1    Barnard, E.2
  • 18
    • 0026120032 scopus 로고
    • Small sample size effects in statistical pattern recognition: Recommendations for practitioners
    • Raudys S, Jain A. Small sample size effects in statistical pattern recognition: Recommendations for practitioners. IEEE Trans PAMI 1991; 13: 252-264.
    • (1991) IEEE Trans PAMI , vol.13 , pp. 252-264
    • Raudys, S.1    Jain, A.2
  • 19
    • 0018253340 scopus 로고
    • On the optimal number of features in the classification of multivariate Gaussian data
    • Jain A, Waller W. On the optimal number of features in the classification of multivariate Gaussian data. Patt Recognition 1978; 10: 365-374.
    • (1978) Patt Recognition , vol.10 , pp. 365-374
    • Jain, A.1    Waller, W.2
  • 20
    • 0040532951 scopus 로고
    • Feature space trajectory neural network classifier
    • Applications and Science of Artificial Neural Networks, S. Rogers and D. Ruck (editors)
    • Neiberg L, Casasent D. Feature space trajectory neural network classifier. In Applications and Science of Artificial Neural Networks, S. Rogers and D. Ruck (editors), Proc Soc Photo-Optical Instrumentation Eng 1995; 2492: 361-372.
    • (1995) Proc Soc Photo-optical Instrumentation Eng , vol.2492 , pp. 361-372
    • Neiberg, L.1    Casasent, D.2
  • 22
    • 0025490985 scopus 로고
    • Networks for approximation and learning
    • Poggio T, Girosi F. Networks for approximation and learning. Proc IEEE 1990; 78: 1481-1497.
    • (1990) Proc IEEE , vol.78 , pp. 1481-1497
    • Poggio, T.1    Girosi, F.2
  • 23
    • 0027294340 scopus 로고
    • Improving model selection by nonconvergent methods
    • Finnoff W, Hergert F, Zimmerman HG. Improving model selection by nonconvergent methods. Neural Networks 1993; 6(6): 771-783.
    • (1993) Neural Networks , vol.6 , Issue.6 , pp. 771-783
    • Finnoff, W.1    Hergert, F.2    Zimmerman, H.G.3
  • 25
    • 0001753172 scopus 로고
    • 3D measurements from imaging laser radars: How good are they?
    • Hebert M, Krotkov E. 3D measurements from imaging laser radars: how good are they? Image and Vision Computing 1992; 10: 170-178.
    • (1992) Image and Vision Computing , vol.10 , pp. 170-178
    • Hebert, M.1    Krotkov, E.2
  • 28
    • 0030109078 scopus 로고    scopus 로고
    • Computing occlusion-free viewpoints
    • Tarabanis K, Tsai R, Kaul A. Computing occlusion-free viewpoints. IEEE Trans PAMI 1996; 18: 279-292.
    • (1996) IEEE Trans PAMI , vol.18 , pp. 279-292
    • Tarabanis, K.1    Tsai, R.2    Kaul, A.3
  • 29
    • 0029220876 scopus 로고
    • Visual learning and recognition of 3-D objects from appearance
    • Murase H, Nayar SK. Visual learning and recognition of 3-D objects from appearance. Int J Computer Vision 1995; 14: 5-24.
    • (1995) Int J Computer Vision , vol.14 , pp. 5-24
    • Murase, H.1    Nayar, S.K.2
  • 30
    • 0031121874 scopus 로고    scopus 로고
    • Detection of 3d objects in cluttered scenes using hierarchical eigenspace
    • Murase H, Nayar S. Detection of 3d objects in cluttered scenes using hierarchical eigenspace. Patt Recognition Lett 1997; 18(4): 375-384.
    • (1997) Patt Recognition Lett , vol.18 , Issue.4 , pp. 375-384
    • Murase, H.1    Nayar, S.2
  • 33
    • 0028483559 scopus 로고
    • Comparative analysis of statistical pattern recognition methods in high dimensional settings
    • Aeberhard S, Coomans D, Vel, OD. Comparative analysis of statistical pattern recognition methods in high dimensional settings. Patt Recognition 1992; 27: 1065-1077.
    • (1992) Patt Recognition , vol.27 , pp. 1065-1077
    • Aeberhard, S.1    Coomans, D.2    Vel, O.D.3
  • 34
    • 0026152376 scopus 로고
    • Unsupervised texture segmentation using Markov random field models
    • Manjunath BS, Chellappa R. Unsupervised texture segmentation using Markov random field models. IEEE Trans PAMI 1991; 13: 478-482.
    • (1991) IEEE Trans PAMI , vol.13 , pp. 478-482
    • Manjunath, B.S.1    Chellappa, R.2
  • 35
    • 0000441433 scopus 로고    scopus 로고
    • Synthetic aperture radar detection, recognition, and clutter rejection with new minimum noise and correlation energy filters
    • Casasent D, Ashizawa S. Synthetic aperture radar detection, recognition, and clutter rejection with new minimum noise and correlation energy filters. Opt Eng 1997; 36: 2729-2736.
    • (1997) Opt Eng , vol.36 , pp. 2729-2736
    • Casasent, D.1    Ashizawa, S.2
  • 36
    • 0039940040 scopus 로고
    • Syntactic pattern recognition
    • Rothman P. Syntactic pattern recognition. AI Expert 1992; 7: 40-51.
    • (1992) AI Expert , vol.7 , pp. 40-51
    • Rothman, P.1
  • 37
    • 58149421595 scopus 로고
    • Analysis of a complex of statistical variables into principal components
    • Hotelling H. Analysis of a complex of statistical variables into principal components. J Educ Psychology 1933; 24: 417-441, 498-520.
    • (1933) J Educ Psychology , vol.24 , pp. 417-441
    • Hotelling, H.1
  • 38
    • 0030214923 scopus 로고    scopus 로고
    • Using discriminant eigenfeatures for image retrieval
    • Swets DL, Weng JJ. Using discriminant eigenfeatures for image retrieval. IEEE Trans PAMI 1996; 18: 831.
    • (1996) IEEE Trans PAMI , vol.18 , pp. 831
    • Swets, D.L.1    Weng, J.J.2
  • 39
    • 0014864796 scopus 로고
    • Applications of the Karhunen-Loeve expansion to feature selection and ordering
    • Fukunaga K, Koontz WLG. Applications of the Karhunen-Loeve expansion to feature selection and ordering. IEEE Trans Comp 1970; C-19: 917-923.
    • (1970) IEEE Trans Comp , vol.C-19 , pp. 917-923
    • Fukunaga, K.1    Koontz, W.L.G.2
  • 41
    • 0001609497 scopus 로고    scopus 로고
    • A general methodology for simultaneous representation and discrimination of multiple object classes
    • Talukder A, Casasent D. A general methodology for simultaneous representation and discrimination of multiple object classes. Opt Eng 1998; 37: 904-913.
    • (1998) Opt Eng , vol.37 , pp. 904-913
    • Talukder, A.1    Casasent, D.2
  • 42
    • 0039940041 scopus 로고    scopus 로고
    • Classification and pose estimation for active vision using non-linear features
    • Talukder A, Casasent D. Classification and pose estimation for active vision using non-linear features. Proc Soc Photo-Optical Instrumentation Eng 1998; 3386.
    • (1998) Proc Soc Photo-optical Instrumentation Eng , pp. 3386
    • Talukder, A.1    Casasent, D.2
  • 44
    • 0025206332 scopus 로고
    • Probabilistic neural networks
    • Specht DF. Probabilistic neural networks. Neural Networks 1990; 3(1).
    • (1990) Neural Networks , vol.3 , Issue.1
    • Specht, D.F.1
  • 45
    • 0003840341 scopus 로고    scopus 로고
    • Columbia image object library (COIL-20)
    • Department of Computer Science, Columbia University, New York, NY 10027
    • Nene SA, Nayar SK, Murase H. Columbia image object library (COIL-20). Technical Report CUCS-006-96, Department of Computer Science, Columbia University, New York, NY 10027, 1996.
    • (1996) Technical Report CUCS-006-96
    • Nene, S.A.1    Nayar, S.K.2    Murase, H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.