-
1
-
-
85032186474
-
A combinatorial characterization of the distributed tasks which are solvable in the presence of one faulty processor
-
Toronto, Ont., Canada, ACM, New York
-
O. BIRAN, S. MORAN, AND S. ZAKS, A combinatorial characterization of the distributed tasks which are solvable in the presence of one faulty processor, in Proc. 7th ACM Symposium on Principles of Distributed Computing, Toronto, Ont., Canada, ACM, New York, 1988, pp. 263-275.
-
(1988)
Proc. 7th ACM Symposium on Principles of Distributed Computing
, pp. 263-275
-
-
Biran, O.1
Moran, S.2
Zaks, S.3
-
3
-
-
0027225071
-
Generalized FLP impossibility result for t-resilient asynchronous computations
-
San Diego, CA, ACM, New York
-
E. BOROWSKY AND E. GAFNI, Generalized FLP impossibility result for t-resilient asynchronous computations, in Proc. 25th ACM Symposium on the Theory of Computing, San Diego, CA, ACM, New York, 1993, pp. 91-100.
-
(1993)
Proc. 25th ACM Symposium on the Theory of Computing
, pp. 91-100
-
-
Borowsky, E.1
Gafni, E.2
-
4
-
-
0000376243
-
Über die topologie des dreidimensional raumes
-
in German
-
M. DEHN, Über die topologie des dreidimensional raumes, Math. Ann., 69 (1910), pp. 137-168 (in German);
-
(1910)
Math. Ann.
, vol.69
, pp. 137-168
-
-
Dehn, M.1
-
6
-
-
0029516602
-
Optimal algorithms for curves on surfaces
-
Milwaukee, WI, IEEE Computer Society Press, Los Alamitos, CA
-
T. K. DEY AND S. GUHA, Optimal algorithms for curves on surfaces, in Proc. 36th Annual IEEE Symposium on Foundations of Computer Science, Milwaukee, WI, IEEE Computer Society Press, Los Alamitos, CA, 1995, pp. 266-274.
-
(1995)
Proc. 36th Annual IEEE Symposium on Foundations of Computer Science
, pp. 266-274
-
-
Dey, T.K.1
Guha, S.2
-
7
-
-
0022045868
-
Impossibility of distributed consensus with one faulty process
-
M. FISCHER, N. LYNCH, AND M. PATERSON, Impossibility of distributed consensus with one faulty process, J. Assoc. Comput. Mach., 32 (1985), pp. 374-382.
-
(1985)
J. Assoc. Comput. Mach.
, vol.32
, pp. 374-382
-
-
Fischer, M.1
Lynch, N.2
Paterson, M.3
-
8
-
-
33751284518
-
3-processor tasks are undecidable
-
Ottawa, Ont., Canada, ACM, New York, abstract
-
E. GAFNI AND E. KOUTSOUPIAS, 3-processor tasks are undecidable, in Proc. 14th Annual ACM Symposium on Principles of Distributed Computing, Ottawa, Ont., Canada, ACM, New York, 1995, p. 271 (abstract).
-
(1995)
Proc. 14th Annual ACM Symposium on Principles of Distributed Computing
, pp. 271
-
-
Gafni, E.1
Koutsoupias, E.2
-
9
-
-
0030713848
-
The decidability of distributed decision tasks
-
El Paso, TX, ACM, New York
-
M. HERLIHY AND S. RAJSBAUM, The decidability of distributed decision tasks, in Proc. 29th ACM Symposium on the Theory of Computing, El Paso, TX, ACM, New York, 1997, pp. 589-598.
-
(1997)
Proc. 29th ACM Symposium on the Theory of Computing
, pp. 589-598
-
-
Herlihy, M.1
Rajsbaum, S.2
-
10
-
-
0027188178
-
The asynchronous computability theorem for t-resilient tasks
-
San Diego, CA, ACM, New York
-
M. HERLIHY AND N. SHAVIT, The asynchronous computability theorem for t-resilient tasks, in Proc. 25th ACM Symposium on the Theory of Computing, San Diego, CA, ACM, New York, 1993, pp. 111-120.
-
(1993)
Proc. 25th ACM Symposium on the Theory of Computing
, pp. 111-120
-
-
Herlihy, M.1
Shavit, N.2
-
11
-
-
0028062298
-
A simple constructive computability theorem for wait-free computation
-
Montreal, Quebec, Canada, ACM, New York
-
M. HERLIHY AND N. SHAVIT, A simple constructive computability theorem for wait-free computation, in Proc. 26th ACM Symposium on the Theory of Computing, Montreal, Quebec, Canada, ACM, New York, 1994, pp. 101-110.
-
(1994)
Proc. 26th ACM Symposium on the Theory of Computing
, pp. 101-110
-
-
Herlihy, M.1
Shavit, N.2
-
12
-
-
0041059875
-
The Topological Structure of Asynchronous Computability
-
Department of Computer Science, Brown University, Providence, RI
-
M. HERLIHY AND N. SHAVIT, The Topological Structure of Asynchronous Computability, Tech. report CS-96-03, Department of Computer Science, Brown University, Providence, RI, 1996.
-
(1996)
Tech. Report CS-96-03
-
-
Herlihy, M.1
Shavit, N.2
-
13
-
-
0003060369
-
Some results on the impossibility, universality and decidability of consensus
-
Haifa, Israel
-
P. JAYANTI AND S. TOUEG, Some results on the impossibility, universality and decidability of consensus, in Proc. 6th Workshop on Distributed Algorithms, Haifa, Israel, 1992, pp. 68-84.
-
(1992)
Proc. 6th Workshop on Distributed Algorithms
, pp. 68-84
-
-
Jayanti, P.1
Toueg, S.2
-
16
-
-
0002996665
-
On the Algorithmic Unsolvability of the Word Problem in Group Theory
-
Izdat. Akad. Nauk SSSR, Moscow, in Russian
-
P. S. NOVIKOV, On the Algorithmic Unsolvability of the Word Problem in Group Theory, Trudy Mat. Inst. im. Steklov. 44, Izdat. Akad. Nauk SSSR, Moscow, 1955, (in Russian).
-
(1955)
Trudy Mat. Inst. Im. Steklov.
, vol.44
-
-
Novikov, P.S.1
-
17
-
-
2642531180
-
On the algorithmic insolvability of the word problem in group theory
-
English translation available as On the algorithmic insolvability of the word problem in group theory, AMS Trans., 2 (1958), pp. 1-122.
-
(1958)
AMS Trans.
, vol.2
, pp. 1-122
-
-
-
18
-
-
0003589709
-
An Introduction to the Theory of Groups, 4th ed
-
Springer-Verlag, New York
-
J. J. ROTMAN, An Introduction to the Theory of Groups, 4th ed., Grad. Texts in Math., Springer-Verlag, New York, 1995.
-
(1995)
Grad. Texts in Math.
-
-
Rotman, J.J.1
-
19
-
-
0027188179
-
Wait-free k-set agreement is impossible: The topology of public knowledge
-
San Diego, CA, ACM, New York
-
M. SAKS AND F. ZAHAROGLOU, Wait-free k-set agreement is impossible: The topology of public knowledge, in Proc. 26th ACM Symposium on the Theory of Computing, San Diego, CA, ACM, New York, 1993, pp. 101-110.
-
(1993)
Proc. 26th ACM Symposium on the Theory of Computing
, pp. 101-110
-
-
Saks, M.1
Zaharoglou, F.2
-
21
-
-
0003647394
-
Classical Topology and Combinatorial Group Theory, 2nd ed
-
Springer-Verlag, New York
-
J. STILLWELL, Classical Topology and Combinatorial Group Theory, 2nd ed., Grad. Texts in Math., Springer-Verlag, New York, 1993.
-
(1993)
Grad. Texts in Math.
-
-
Stillwell, J.1
|