메뉴 건너뛰기




Volumn 26, Issue 6, 1998, Pages 2083-2103

The maximum likelihood prior

Author keywords

Asymptotic admissibility; Kullback Leibler distance; Maximum likelihood; The Jeffreys prior; Uninformative priors

Indexed keywords


EID: 0032235890     PISSN: 00905364     EISSN: None     Source Type: Journal    
DOI: 10.1214/aos/1024691462     Document Type: Article
Times cited : (60)

References (27)
  • 1
    • 85042251872 scopus 로고
    • Goodness of prediction
    • AITCHISON, J. (1975). Goodness of prediction. Biometrika 62 547-554.
    • (1975) Biometrika , vol.62 , pp. 547-554
    • Aitchison, J.1
  • 2
    • 0000344740 scopus 로고
    • Differential geometry of curved exponential families: Curvatures and information loss
    • AMARI, S. (1982). Differential geometry of curved exponential families: curvatures and information loss. Ann. Statist. 10 357-387.
    • (1982) Ann. Statist. , vol.10 , pp. 357-387
    • Amari, S.1
  • 3
    • 0002183088 scopus 로고
    • Reference posterior densities for Bayesian inference (with discussion)
    • BERNARDO, J. M. (1979). Reference posterior densities for Bayesian inference (with discussion). J. Roy. Statist. Soc. Ser. B 41 113-147.
    • (1979) J. Roy. Statist. Soc. Ser. B , vol.41 , pp. 113-147
    • Bernardo, J.M.1
  • 4
    • 0001141391 scopus 로고
    • On the development of the reference prior method
    • J. M. Bernardo, J. O. Berger, A. P. Dawid and A. F. M. Smith, eds. Clarendon Press, Oxford
    • BERGER, J. O. and BERNARDO, J. M. (1992). On the development of the reference prior method. In Bayesian Statistics 4. Proceedings of the Fourth Valencia International Meeting (J. M. Bernardo, J. O. Berger, A. P. Dawid and A. F. M. Smith, eds.) 35-60. Clarendon Press, Oxford.
    • (1992) Bayesian Statistics 4. Proceedings of the Fourth Valencia International Meeting , pp. 35-60
    • Berger, J.O.1    Bernardo, J.M.2
  • 5
    • 0000268682 scopus 로고
    • Admissible estimators, recurrent diffusions, and insoluble boundary value problems
    • BROWN, L. D. (1971). Admissible estimators, recurrent diffusions, and insoluble boundary value problems. Ann. Math. Statist. 42 855-903.
    • (1971) Ann. Math. Statist. , vol.42 , pp. 855-903
    • Brown, L.D.1
  • 6
    • 0002872117 scopus 로고
    • A heuristic method for determining admissibility of estimators with applications
    • BROWN, L. D. (1979). A heuristic method for determining admissibility of estimators with applications. Ann. Statist. 7 960-994.
    • (1979) Ann. Statist. , vol.7 , pp. 960-994
    • Brown, L.D.1
  • 7
    • 0002138061 scopus 로고
    • Jeffreys prior is asymptotically least favourable under entropy risk
    • CLARKE, B. and BARRON, A. (1994). Jeffreys prior is asymptotically least favourable under entropy risk. J. Statist. Plann. Inference 41 37-60.
    • (1994) J. Statist. Plann. Inference , vol.41 , pp. 37-60
    • Clarke, B.1    Barron, A.2
  • 9
    • 0040999083 scopus 로고
    • Second-order efficiency of maximum likelihood estimators
    • GHOSH, J. K. and SUBRAMANYAM, K. (1974). Second-order efficiency of maximum likelihood estimators. Sankhyā Ser. A 36 325-358.
    • (1974) Sankhyā Ser. A , vol.36 , pp. 325-358
    • Ghosh, J.K.1    Subramanyam, K.2
  • 10
    • 0013058848 scopus 로고
    • Invariant prior densities
    • HARTIGAN, J. A. (1964). Invariant prior densities. Ann. Math. Statist. 35 836-845.
    • (1964) Ann. Math. Statist. , vol.35 , pp. 836-845
    • Hartigan, J.A.1
  • 11
    • 0009337062 scopus 로고
    • The asymptotically unbiased density
    • HARTIGAN, J. A. (1965). The asymptotically unbiased density. Ann. Math. Statist. 36 1137-1152.
    • (1965) Ann. Math. Statist. , vol.36 , pp. 1137-1152
    • Hartigan, J.A.1
  • 13
    • 84873751778 scopus 로고
    • An invariant form of the prior probability in estimation problems
    • JEFFREYS, H. (1946). An invariant form of the prior probability in estimation problems. Proc. Roy. Soc. London Ser. A 186 453-461.
    • (1946) Proc. Roy. Soc. London Ser. A , vol.186 , pp. 453-461
    • Jeffreys, H.1
  • 15
    • 0001371882 scopus 로고
    • An asymptotic expansion for posterior distributions
    • JOHNSON, R. A. (1967). An asymptotic expansion for posterior distributions. Ann. Math. Statist. 38 1899-1907.
    • (1967) Ann. Math. Statist. , vol.38 , pp. 1899-1907
    • Johnson, R.A.1
  • 16
    • 0001554897 scopus 로고    scopus 로고
    • On asymptotic properties of predictive distributions
    • KOMAKI, F. (1996). On asymptotic properties of predictive distributions. Biometrika 83 229-313.
    • (1996) Biometrika , vol.83 , pp. 229-313
    • Komaki, F.1
  • 17
    • 0008563353 scopus 로고
    • Minimax estimation and positive solutions of elliptic equations
    • LEVIT, B. YA. (1982). Minimax estimation and positive solutions of elliptic equations. Theory Probab. Appl. 27 563-586.
    • (1982) Theory Probab. Appl. , vol.27 , pp. 563-586
    • Levit, B.Ya.1
  • 18
    • 0039009006 scopus 로고
    • Second-order availability and positive solutions of the Schrödinger equation
    • Springer, Berlin
    • LEVIT, B. YA. (1983). Second-order availability and positive solutions of the Schrödinger equation. Lecture Notes in Math. 1021 372-385. Springer, Berlin.
    • (1983) Lecture Notes in Math. , vol.1021 , pp. 372-385
    • Levit, B.Ya.1
  • 19
    • 0008528093 scopus 로고
    • Second-order asymptotic optimality and positive solutions of Schrödinger's equation
    • LEVIT, B. YA. (1985). Second-order asymptotic optimality and positive solutions of Schrödinger's equation. Theory Probab. Appl. 30 333-363.
    • (1985) Theory Probab. Appl. , vol.30 , pp. 333-363
    • Levit, B.Ya.1
  • 21
    • 0000471495 scopus 로고
    • Some observations on inverse probability, including a new indifference rule
    • PERKS, W. (1947). Some observations on inverse probability, including a new indifference rule. J. Inst. Actuaries 73 285-334.
    • (1947) J. Inst. Actuaries , vol.73 , pp. 285-334
    • Perks, W.1
  • 22
    • 0002125171 scopus 로고
    • A third-order optimal property of the maximum likelihood estimator
    • PFANZAGL, J. and WEFELMEYER, W. (1978). A third-order optimal property of the maximum likelihood estimator. J. Multivariate Anal. 8 1-29.
    • (1978) J. Multivariate Anal. , vol.8 , pp. 1-29
    • Pfanzagl, J.1    Wefelmeyer, W.2
  • 23
    • 0000133508 scopus 로고
    • Asymptotic efficiency and limiting information
    • Univ. California Press, Berkeley
    • RAO, C. R. (1961). Asymptotic efficiency and limiting information. Proc. Fourth Berkeley Symp. Math. Statist. Probab. 1 531-546. Univ. California Press, Berkeley.
    • (1961) Proc. Fourth Berkeley Symp. Math. Statist. Probab. , vol.1 , pp. 531-546
    • Rao, C.R.1
  • 24
    • 0000813561 scopus 로고
    • Inadmissibility of the usual estimator for the mean of a multivariate normal distribution
    • Univ. California Press, Berkeley
    • STEIN, C. (1956). Inadmissibility of the usual estimator for the mean of a multivariate normal distribution. Proc. Third Berkeley Symp. Math. Statist. Probab. 1 197-206. Univ. California Press, Berkeley.
    • (1956) Proc. Third Berkeley Symp. Math. Statist. Probab. , vol.1 , pp. 197-206
    • Stein, C.1
  • 25
    • 0040192929 scopus 로고
    • Asymptotic expansions for Bayes procedures
    • Barra, J. L., eds. North-Holland, Amsterdam
    • STRASSEN, H. (1977). Asymptotic expansions for Bayes procedures. In Recent Developments in Statistics (Barra, J. L., eds.) 9-35. North-Holland, Amsterdam.
    • (1977) Recent Developments in Statistics , pp. 9-35
    • Strassen, H.1
  • 27
    • 0001159310 scopus 로고
    • On formulae for confidence points based on integrals of weighted likelihoods
    • WELCH, B. L. and PEERS, H. W. (1963). On formulae for confidence points based on integrals of weighted likelihoods. J. Roy. Statist. Soc. Ser. B 25 318-329.
    • (1963) J. Roy. Statist. Soc. Ser. B , vol.25 , pp. 318-329
    • Welch, B.L.1    Peers, H.W.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.