메뉴 건너뛰기




Volumn 26, Issue 6, 1998, Pages 2339-2368

Nonparametric comparison of several regression functions: Exact and asymptotic theory

Author keywords

Comparison of regression curves; Heteroscedastic errors; K sample problem; Nonparametric analysis of covariance

Indexed keywords


EID: 0032235630     PISSN: 00905364     EISSN: None     Source Type: Journal    
DOI: 10.1214/aos/1024691474     Document Type: Article
Times cited : (66)

References (20)
  • 1
    • 0000357414 scopus 로고
    • On the use of non parametric regression for checking linear relationships
    • AZZALINI, A. and BOWMAN, A. (1993). On the use of non parametric regression for checking linear relationships. J. Roy. Statist. Soc. Ser. B 55 549-557.
    • (1993) J. Roy. Statist. Soc. Ser. B , vol.55 , pp. 549-557
    • Azzalini, A.1    Bowman, A.2
  • 2
    • 0000123142 scopus 로고
    • The estimation of residual variance in nonparametric regression
    • BUCKLEY, M. J., EAGLESON, G. K. and SILVERMAN, B. W. (1988). The estimation of residual variance in nonparametric regression. Biometrika 75 189-199.
    • (1988) Biometrika , vol.75 , pp. 189-199
    • Buckley, M.J.1    Eagleson, G.K.2    Silverman, B.W.3
  • 3
    • 0011540796 scopus 로고
    • A comparison of variance estimators in nonparametric regression
    • CARTER, C. K. and EAGLESON, G. K. (1992). A comparison of variance estimators in nonparametric regression. J. Roy. Statist. Soc. Ser. B 54 773-780.
    • (1992) J. Roy. Statist. Soc. Ser. B , vol.54 , pp. 773-780
    • Carter, C.K.1    Eagleson, G.K.2
  • 4
    • 0000439838 scopus 로고
    • Testing the (parametric) null model hypothesis in (semiparametric) partial and generalized spline models
    • COX, D., KOH, G., WAHBA, G. and YANDELL, B. S. (1988). Testing the (parametric) null model hypothesis in (semiparametric) partial and generalized spline models. Ann. Statist. 16 113-119.
    • (1988) Ann. Statist. , vol.16 , pp. 113-119
    • Cox, D.1    Koh, G.2    Wahba, G.3    Yandell, B.S.4
  • 5
    • 38249001333 scopus 로고
    • Testing the equality of nonparametric regression curves
    • DELGADO, M. A. (1993). Testing the equality of nonparametric regression curves. Statist. Probab. Lett. 17 199-204.
    • (1993) Statist. Probab. Lett. , vol.17 , pp. 199-204
    • Delgado, M.A.1
  • 6
    • 0040785877 scopus 로고    scopus 로고
    • A review of variance estimators with applications to multivariate nonparametric regression models
    • S. Ghosh, ed. Dekker, New York. To appear
    • DETTE, H., MUNK, A. and WAGNER, T. (1997). A review of variance estimators with applications to multivariate nonparametric regression models. In Multivariate Design and Sampling (S. Ghosh, ed.) Dekker, New York. To appear.
    • (1997) Multivariate Design and Sampling
    • Dette, H.1    Munk, A.2    Wagner, T.3
  • 7
    • 18244372185 scopus 로고    scopus 로고
    • Estimating the variance in nonparametric regression by quadratic forms - What is a reasonable choice?
    • DETTE, H., MUNK, A. and WAGNER, T. (1998). Estimating the variance in nonparametric regression by quadratic forms - what is a reasonable choice? J. Roy. Statist. Soc. Ser. B 60 751-764.
    • (1998) J. Roy. Statist. Soc. Ser. B , vol.60 , pp. 751-764
    • Dette, H.1    Munk, A.2    Wagner, T.3
  • 8
    • 84950450933 scopus 로고
    • Testing the goodness of fit of a linear model via nonparametric regression techniques
    • EUBANK, R. L. and SPIEGELMAN, C. H. (1990). Testing the goodness of fit of a linear model via nonparametric regression techniques. J. Amer. Statist. Assoc. 85 387-392.
    • (1990) J. Amer. Statist. Assoc. , vol.85 , pp. 387-392
    • Eubank, R.L.1    Spiegelman, C.H.2
  • 9
    • 0001106460 scopus 로고
    • Residual variance and residual pattern in nonlinear regression
    • GASSER, T., SROKA, L. and JENNEN-STEINMETZ, C. (1986). Residual variance and residual pattern in nonlinear regression. Biometrika 73 625-633.
    • (1986) Biometrika , vol.73 , pp. 625-633
    • Gasser, T.1    Sroka, L.2    Jennen-Steinmetz, C.3
  • 10
    • 3242755608 scopus 로고
    • Bootstrap test for difference between means in nonparametric regression
    • HALL, P. and HART, J. D. (1990). Bootstrap test for difference between means in nonparametric regression. J. Amer. Statist. Assoc. 85 1039-1049.
    • (1990) J. Amer. Statist. Assoc. , vol.85 , pp. 1039-1049
    • Hall, P.1    Hart, J.D.2
  • 11
    • 0000035920 scopus 로고
    • On variance estimation in nonparametric regression
    • HALL, P. and MARRON, J. S. (1990). On variance estimation in nonparametric regression. Biometrika 77 415-419.
    • (1990) Biometrika , vol.77 , pp. 415-419
    • Hall, P.1    Marron, J.S.2
  • 12
    • 77956889318 scopus 로고
    • Asymptotically optimal difference-based estimation of variance in nonparametric regression
    • HALL, P., KAY, J. W. and TITTERINGTON, D. M. (1990). Asymptotically optimal difference-based estimation of variance in nonparametric regression. Biometrika 77 521-528.
    • (1990) Biometrika , vol.77 , pp. 521-528
    • Hall, P.1    Kay, J.W.2    Titterington, D.M.3
  • 13
    • 21344496537 scopus 로고
    • Comparing nonparametric versus parametric regression fits
    • HÄRDLE, W. and MAMMEN, E. (1993). Comparing nonparametric versus parametric regression fits. Ann. Statist. 21 1926-1947.
    • (1993) Ann. Statist. , vol.21 , pp. 1926-1947
    • Härdle, W.1    Mammen, E.2
  • 14
    • 0001864592 scopus 로고
    • Semiparametric comparison of regression curves
    • HÄRDLE, W. and MARRON, J. S. (1990). Semiparametric comparison of regression curves. Ann. Statist. 18 83-89.
    • (1990) Ann. Statist. , vol.18 , pp. 83-89
    • Härdle, W.1    Marron, J.S.2
  • 16
    • 0000839856 scopus 로고
    • Testing the equality of regression curves using linear smoothers
    • KING, E. C., HART, J. D. and WEHRLY, T. E. (1991). Testing the equality of regression curves using linear smoothers. Statist. Probab. Lett. 12 239-247.
    • (1991) Statist. Probab. Lett. , vol.12 , pp. 239-247
    • King, E.C.1    Hart, J.D.2    Wehrly, T.E.3
  • 17
    • 84972528388 scopus 로고
    • A central limit theorem for m-dependent random variables
    • OREY, S. (1958). A central limit theorem for m-dependent random variables. Duke Math. J. 52 543-546.
    • (1958) Duke Math. J. , vol.52 , pp. 543-546
    • Orey, S.1
  • 18
    • 0000006440 scopus 로고
    • Bandwidth choice for nonparametric regression
    • RICE, J. (1984). Bandwidth choice for nonparametric regression. Ann. Statist. 12 1215-1230.
    • (1984) Ann. Statist. , vol.12 , pp. 1215-1230
    • Rice, J.1
  • 19
    • 0000006130 scopus 로고
    • Designs for regression problems with correlated errors. Iii
    • SACKS, J. and YLVISAKER, D. (1970). Designs for regression problems with correlated errors. III. Ann. Math. Statist. 41 2057-2074.
    • (1970) Ann. Math. Statist. , vol.41 , pp. 2057-2074
    • Sacks, J.1    Ylvisaker, D.2
  • 20
    • 0011432316 scopus 로고
    • On the estimation of residual variance in nonparametric regression
    • ULLAH, A. and ZINDE-WALSH, V. (1992). On the estimation of residual variance in nonparametric regression. J. Nonparametr. Statist. 1 263-265.
    • (1992) J. Nonparametr. Statist. , vol.1 , pp. 263-265
    • Ullah, A.1    Zinde-Walsh, V.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.