메뉴 건너뛰기




Volumn 50, Issue 4, 1998, Pages 571-575

The dimension of a cut locus on a smooth riemannian manifold

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0032216866     PISSN: 00408735     EISSN: None     Source Type: Journal    
DOI: 10.2748/tmj/1178224899     Document Type: Article
Times cited : (46)

References (11)
  • 3
    • 0000005758 scopus 로고
    • Scattering of geodesic fields I
    • H. Gluck and D. Singer, Scattering of geodesic fields I, Ann. of Math. 108 (1978), 347-372.
    • (1978) Ann. of Math. , vol.108 , pp. 347-372
    • Gluck, H.1    Singer, D.2
  • 4
    • 84972487929 scopus 로고
    • Metric structure of cut loci in surfaces and Ambrose’s problem
    • J. Hebda, Metric structure of cut loci in surfaces and Ambrose’s problem, J. Differential Geom. 40 (1994), 621-642.
    • (1994) J. Differential Geom , vol.40 , pp. 621-642
    • Hebda, J.1
  • 5
    • 0000576031 scopus 로고    scopus 로고
    • The length of cut locus in a surface and Ambrose’s problem
    • J. Itoh, The length of cut locus in a surface and Ambrose’s problem, J. Differential Geom. 43 (1996), 642-651.
    • (1996) J. Differential Geom , vol.43 , pp. 642-651
    • Itoh, J.1
  • 7
    • 84972579970 scopus 로고
    • Cut locus in Riemannian manifolds
    • V. Ozols, Cut locus in Riemannian manifolds, Tôhoku Math. J. 26 (1974), 219-227.
    • (1974) Tôhoku Math. J , vol.26 , pp. 219-227
    • Ozols, V.1
  • 8
    • 0013480955 scopus 로고
    • Morth theory
    • Princeton Univ. Press
    • J. Milnor, Morth theory, Ann. of Math. Studies No. 51, Princeton Univ. Press, 1963.
    • (1963) Ann. of Math. Studies , vol.51
    • Milnor, J.1
  • 9
    • 0003418230 scopus 로고
    • Geometric measure theory
    • Academic Press
    • F. Morgan, Geometric measure theory, A beginner’s guide, Academic Press 1988.
    • (1988) A beginner’s Guide
    • Morgan, F.1
  • 10
    • 11244285389 scopus 로고
    • The length function of geodesic parallel circles
    • (K. Shiohama, ed.) Adv. Studies in Pure Math., Kinokuniya, Tokyo
    • K. Shiohama and M. Tanaka, The length function of geodesic parallel circles, in “Progress in Differential Geometry” (K. Shiohama, ed.) Adv. Studies in Pure Math., Kinokuniya, Tokyo 22 (1993), 299-308.
    • (1993) Progress in Differential Geometry , vol.22 , pp. 299-308
    • Shiohama, K.1    Tanaka, M.2
  • 11
    • 0000732926 scopus 로고
    • The conjugate locus of a Riemannian manifold
    • F. W. Warner, The conjugate locus of a Riemannian manifold, Amer. J. Math. 87 (1965), 575-604.
    • (1965) Amer. J. Math , vol.87 , pp. 575-604
    • Warner, F.W.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.