-
1
-
-
84968503504
-
A new algebraic approach to microlocalization on filtered rings
-
[1] M. J. Asensio del Aquila, M. Van den Bergh, and F. Van Oystaeyen, A new algebraic approach to microlocalization on filtered rings, Trans. Amer. Math. Soc. 316 (1989), no. 2, 15-25.
-
(1989)
Trans. Amer. Math. Soc.
, vol.316
, Issue.2
, pp. 15-25
-
-
Asensio Del Aquila, M.J.1
Van Den Bergh, M.2
Van Oystaeyen, F.3
-
3
-
-
33746661505
-
n's of simple modules over a class of algebras
-
n's of simple modules over a class of algebras, Funktsional. Anal. i Prilozhen. 25 (1991), no. 3, 80-82.
-
(1991)
Funktsional. Anal. i Prilozhen.
, vol.25
, Issue.3
, pp. 80-82
-
-
Bavula, V.V.1
-
4
-
-
0000291137
-
Differential operators on the cubic cone
-
[4] Bernstein, Gelfand, and Gelfand, Differential operators on the cubic cone, Russian Math. Surveys 27 (1972), 169-174.
-
(1972)
Russian Math. Surveys
, vol.27
, pp. 169-174
-
-
Bernstein1
Gelfand2
Gelfand3
-
5
-
-
34250299402
-
A category of g-modules
-
[5] J. Bernstein, I. Gel'fand, and S. Gel'fand, A category of g-modules, Functional Anal. Appl. 10 (1976), 87-92.
-
(1976)
Functional Anal. Appl.
, vol.10
, pp. 87-92
-
-
Bernstein, J.1
Gel'fand, I.2
Gel'fand, S.3
-
6
-
-
38248999123
-
Non-commutative deformations of Type-A Kleinian singularities
-
[6] T. Hodges, Non-commutative deformations of Type-A Kleinian singularities, J. Algebra 161 (1993), 271-290.
-
(1993)
J. Algebra
, vol.161
, pp. 271-290
-
-
Hodges, T.1
-
7
-
-
0001675792
-
Global dimension of tiled orders over a discrete valuation ring
-
[7] V. A. Jategaonkar, Global dimension of tiled orders over a discrete valuation ring, Trans. Amer. Math. Soc. 196 (1974), 313-330.
-
(1974)
Trans. Amer. Math. Soc.
, vol.196
, pp. 313-330
-
-
Jategaonkar, V.A.1
-
8
-
-
51249180299
-
A generalization of Quillen's lemma and its applications to the Weyl algebras
-
[8] A. Joseph, A generalization of Quillen's lemma and its applications to the Weyl algebras, Israel J. Math. 28 (1977), no. 3, 177-192.
-
(1977)
Israel J. Math.
, vol.28
, Issue.3
, pp. 177-192
-
-
Joseph, A.1
-
9
-
-
84960612192
-
Modules of k-finite vectors over semisimple Lie algebras
-
[9] A. Joseph and J. T. Stafford, Modules of k-finite vectors over semisimple Lie algebras, Proc. London Math. Soc. (3) 49 (1984), 361-384.
-
(1984)
Proc. London Math. Soc.
, vol.49
, Issue.3
, pp. 361-384
-
-
Joseph, A.1
Stafford, J.T.2
-
10
-
-
0001449292
-
A Harish-Chandra homomorphism for reductive group actions
-
[10] F. Knop, A Harish-Chandra homomorphism for reductive group actions, Ann. of Math. (2) 140 (1994), 253-288.
-
(1994)
Ann. of Math.
, vol.140
, Issue.2
, pp. 253-288
-
-
Knop, F.1
-
11
-
-
0003226687
-
Growth of algebras and Gelfand-Kirillov dimension
-
Pitman, Boston
-
[11] G. R. Krause and T. H. Lenagan, Growth of algebras and Gelfand-Kirillov dimension, Research notes in mathematics, vol. 116, Pitman, Boston, 1985.
-
(1985)
Research Notes in Mathematics
, vol.116
-
-
Krause, G.R.1
Lenagan, T.H.2
-
12
-
-
0010066515
-
Dimension injective de quotients primitifs minimaux de l'algèbre enveloppante d'une algèbre de Lie semi-simple
-
[12] T. Levasseur, Dimension injective de quotients primitifs minimaux de l'algèbre enveloppante d'une algèbre de Lie semi-simple, C. R. Acad. Sci. Paris Sér. I Math. 292 (1981), 385-387.
-
(1981)
C. R. Acad. Sci. Paris Sér. I Math.
, vol.292
, pp. 385-387
-
-
Levasseur, T.1
-
13
-
-
0343271542
-
Complexe bidualisant en algèbre non-commutative
-
(M. P. Malliavin, ed.), Springer Verlag
-
[13] _, Complexe bidualisant en algèbre non-commutative, (M. P. Malliavin, ed.), Lecture Notes in Mathematics, vol. 1146, Springer Verlag, 1984, pp. 270-287.
-
(1984)
Lecture Notes in Mathematics
, vol.1146
, pp. 270-287
-
-
-
14
-
-
0003274064
-
Rings of differential operators on classical rings of invariants
-
Memoirs of the AMS
-
[14] T. Levasseur and J. T. Stafford, Rings of differential operators on classical rings of invariants, Memoirs of the AMS, vol. 412, Amer. Math. Soc., 1989.
-
(1989)
Amer. Math. Soc.
, vol.412
-
-
Levasseur, T.1
Stafford, J.T.2
-
16
-
-
38249026266
-
Gelfand-Kirillov dimension and associated graded modules
-
[16] J. C. McConnell and J. T. Stafford, Gelfand-Kirillov dimension and associated graded modules, J. Algebra 125 (1989), no. 1, 197-214.
-
(1989)
J. Algebra
, vol.125
, Issue.1
, pp. 197-214
-
-
McConnell, J.C.1
Stafford, J.T.2
-
17
-
-
0001890908
-
Fixed rings of finite automorphism groups of associative rings
-
Springer Verlag, Berlin
-
[17] S. Montgomery, Fixed rings of finite automorphism groups of associative rings, Lecture Notes in Mathematics, vol. 818, Springer Verlag, Berlin, 1980.
-
(1980)
Lecture Notes in Mathematics
, vol.818
-
-
Montgomery, S.1
-
18
-
-
0000303945
-
Rings of differential operators on invariants of tori
-
[18] I. M. Musson, Rings of differential operators on invariants of tori, Trans. Amer. Math. Soc. 303 (1987), 805-827.
-
(1987)
Trans. Amer. Math. Soc.
, vol.303
, pp. 805-827
-
-
Musson, I.M.1
-
19
-
-
0001059661
-
Differential operators on toric varieties
-
[19] _, Differential operators on toric varieties, J. Pure Appl. Algebra 95 (1994), no. 3, 303-315.
-
(1994)
J. Pure Appl. Algebra
, vol.95
, Issue.3
, pp. 303-315
-
-
-
21
-
-
0002818135
-
Convex bodies and algebraic geometry: An introduction to the theory of toric varieties
-
Springer Verlag, Berlin, Heidelberg, NewYork
-
[21] T. Oda, Convex bodies and algebraic geometry: an introduction to the theory of toric varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 315, Springer Verlag, Berlin, Heidelberg, NewYork, 1988.
-
(1988)
Ergebnisse der Mathematik und Ihrer Grenzgebiete
, vol.315
-
-
Oda, T.1
-
22
-
-
0000007779
-
Lifting differential operators from orbitspaces
-
[22] G. Schwarz, Lifting differential operators from orbitspaces, Ann. Sci. École Norm. Sup. (4) 28 (1995), 253-306.
-
(1995)
Ann. Sci. École Norm. Sup. (4)
, vol.28
, pp. 253-306
-
-
Schwarz, G.1
-
24
-
-
0001404036
-
Combinatorics and invariant theory
-
[24] R. P. Stanley, Combinatorics and invariant theory, Proc. Symp. Pure Math. 34 (1979), 345-355.
-
(1979)
Proc. Symp. Pure Math.
, vol.34
, pp. 345-355
-
-
Stanley, R.P.1
-
25
-
-
0000560350
-
Linear diophantine equations and local cohomology
-
[25] _, Linear diophantine equations and local cohomology, Invent. Math. 68 (1982), 175-193.
-
(1982)
Invent. Math.
, vol.68
, pp. 175-193
-
-
-
27
-
-
0000939012
-
Cohen-Macaulayness of modules of covariants
-
[27] M. Van den Bergh, Cohen-Macaulayness of modules of covariants, Invent. Math. 106 (1991), 389-409.
-
(1991)
Invent. Math.
, vol.106
, pp. 389-409
-
-
Van Den Bergh, M.1
-
28
-
-
0000998745
-
Differential operators on semi-invariants for tori and weighted projective spaces, Topics in invariant theory
-
(M. P. Malliavin, ed.), Springer Verlag
-
[28] _, Differential operators on semi-invariants for tori and weighted projective spaces, Topics in invariant theory (M. P. Malliavin, ed.), Lecture Notes in Mathematics, vol. 1478, Springer Verlag, 1991, pp. 255-272.
-
(1991)
Lecture Notes in Mathematics
, vol.1478
, pp. 255-272
-
-
-
29
-
-
84966243731
-
Cohen-Macaulayness of semi-invariants for tori
-
[29] _, Cohen-Macaulayness of semi-invariants for tori, Trans. Amer. Math. Soc. 336 (1993), no. 2, 557-580.
-
(1993)
Trans. Amer. Math. Soc.
, vol.336
, Issue.2
, pp. 557-580
-
-
-
30
-
-
40549116200
-
Local cohomology of modules of covariants
-
Birkäuser
-
[30] _, Local cohomology of modules of covariants, Proceedings of the ICM 94, vol. 1, Birkäuser, 1995, pp. 352-362.
-
(1995)
Proceedings of the ICM 94
, vol.1
, pp. 352-362
-
-
-
31
-
-
0030600742
-
2-invariants are simple
-
2-invariants are simple, J. Pure Appl. Algebra 107 (1996), 309-335.
-
(1996)
J. Pure Appl. Algebra
, vol.107
, pp. 309-335
-
-
-
32
-
-
0000051437
-
Algebraic micro localization
-
[32] A. Van den Essen, Algebraic micro localization, Comm. Algebra 14 (1986), 971-1000.
-
(1986)
Comm. Algebra
, vol.14
, pp. 971-1000
-
-
Van Den Essen, A.1
-
34
-
-
0000100887
-
Tame biserial algebras
-
[34] B. Wald and J. Waschbüsch, Tame biserial algebras, J. Algebra 95 (1985), 480-500.
-
(1985)
J. Algebra
, vol.95
, pp. 480-500
-
-
Wald, B.1
Waschbüsch, J.2
|